EZ-ZONE® PM

User's Guide

Limit Controller Models

1241 Bundy Boulevard., Winona, Minnesota USA 55987 Phone: +1 (507) 454-5300, Fax: +1 (507) 452-4507 http://www.watlow.com

0600-0057-0000 Rev. N

August 2016

Safety Information

We use note, caution and warning symbols throughout this book to draw your attention to important operational and safety information.

- A "NOTE" marks a short message to alert you to an important detail.
- A "CAUTION" safety alert appears with information that is important for protecting your equipment and performance. Be especially careful to read and follow all cautions that apply to your application.
- A "WARNING" safety alert appears with information that is important for protecting you, others and equipment from damage. Pay very close attention to all warnings that apply to your application.
- The electrical hazard symbol, \triangle (a lightning bolt in a triangle) precedes an electric shock hazard CAUTION or WARNING safety statement.

Sym- bol	Explanation
1	CAUTION - Warning or Hazard that needs further explanation than label on unit can provide. Consult User's Guide for further information.
	ESD Sensitive product, use proper grounding and handling techniques when installing or servicing product.
	Unit protected by double/reinforced insulation for shock hazard prevention.
X	Do not throw in trash, use proper recycling techniques or consult manufacturer for proper disposal.
స్ట	Enclosure made of Polycarbonate material. Use proper recycling techniques or consult manufacturer for proper disposal.
\sim	Unit can be powered with either alternating current (ac) voltage or direct current (dc) voltage.
CUL US SARL LISTED PROCESS CONTROL EQUIPMENT	Unit is a Listed device per Underwriters Laboratories®. It has been evaluated to United States and Canadian requirements for Process Control Equipment. UL 61010 and CSA C22.2 No. 61010. File E185611 QUYX, QUYX7. See: www.ul.com
CE	Unit is compliant with European Union directives. See Declaration of Conformity for further details on Directives and Standards used for Compliance.
FM	Unit has been reviewed and approved by Factory Mutual as a Temperature Limit Device per FM Class 3545 standard. See: www.fmglobal.com
	Unit has been reviewed and approved by CSA International for use as Temperature Indicating-Regulating Equipment per CSA C22.2 No. 24. See: www.csa-international.org

DeviceNet.	Unit has been reviewed and approved by ODVA for compliance with DeviceNet communications protocol. See: www.odva.org
EtherNet \(IP^\) conformance tested	Unit has been reviewed and approved by ODVA for compliance with Ethernet/IP communications protocol. See: www.odva.org

Warranty

The EZ-ZONE PM is manufactured by ISO 9001-registered processes and is backed by a three-year warranty to the first purchaser for use, providing that the units have not been misapplied. Since Watlow has no control over their use, and sometimes misuse, we cannot guarantee against failure. Watlow's obligations hereunder, at Watlow's option, are limited to replacement, repair or refund of purchase price, and parts which upon examination prove to be defective within the warranty period specified. This warranty does not apply to damage resulting from transportation, alteration, misuse or abuse. The purchaser must use Watlow parts to maintain all listed ratings.

Technical Assistance

If you encounter a problem with your Watlow controller, review your configuration information to verify that your selections are consistent with your application: inputs, outputs, alarms, limits, etc. If the problem persists, you can get technical assistance from your local Watlow representative (see back cover), by e-mailing your questions to <a href="winter-mailto:winter-mail

- Complete model number
- All configuration information
- User's Guide
- Factory Page

Return Material Authorization (RMA)

- 1. Call Watlow Customer Service, (507) 454-5300, for a Return Material Authorization (RMA) number before returning any item for repair. If you do not know why the product failed, contact an Application Engineer or Product Manager. All RMA's require:
 - Ship-to address
 - Bill-to address
 - Contact name
 - Phone number
 - Method of return shipment
 - Your P.O. number
 - Detailed description of the problem
 - Any special instructions
 - Name and phone number of person returning the product.
- 2. Prior approval and an Return Merchandise Authorization number from the Customer Service Department is required when returning any product for credit, repair or evaluation. Make sure the Return Merchandise Authorization number is on the outside of the

- carton and on all paperwork returned. Ship on a Freight Prepaid basis.
- 3. After we receive your return, we will examine it and try to verify the reason for returning it.
- 4. In cases of manufacturing defect, we will enter a repair order, replacement order or issue credit for material returned. In cases of customer misuse, we will provide repair costs and request a purchase order to proceed with the repair work.
- 5. To return products that are not defective, goods must be in new condition, in the original boxes and they must be returned within 120 days of receipt. A 20 percent restocking charge is applied for all returned stock controls and accessories.
- 6. If the unit cannot be repaired, you will receive a letter of explanation and be given the option to have the unit returned to you at your expense or to have us scrap the unit.
- 7. Watlow reserves the right to charge for no trouble found (NTF) returns.

This EZ-ZONE® PM User's Guide is copyrighted by Watlow Electric, Inc., © August 2016 with all rights reserved.

EZ-ZONE PML is covered by U.S. Patent Numbers: 6,005,577 and Patents Pending

TC Table of Contents

Table of Contents	1
Chapter 1: Overview	4
Available EZ-ZONE PM Literature and Resources	4
Introduction	
A Conceptual View of the PM	6
Inputs	6
Internal Functions	6
Outputs	7
Input Events and Output Events	7
Chapter 2: Install and Wire	. 11
Dimensions	. 11
1/32 DIN (PM3)	. 11
1/32 DIN (PM3) Recommended Panel Spacing	. 11
1/16 DIN (PM6)	
1/16 DIN (PM6) Recommended Panel Spacing	. 12
1/8 DIN (PM8) Vertical	. 13
1/8 DIN (PM8) Vertical Recommended Panel Spacing	
1/8 DIN (PM9) Horizontal	. 14
1/8 DIN (PM9) Horizontal Recommended Panel Spacing	. 14
1/4 DIN (PM4)	
1/4 DIN (PM4) Recommended Panel Spacing	
Installation	
Wiring	
PM Integrated Isolation Block	
Chapter 3: Keys and Displays	. 39
Responding to a Displayed Message	
Chapter 4: Home Page	
Changing the Set Point	
Modifying the Home Page	
Modifying the Display Pairs	
Conventions Used in the Menu Pages	
Display	
Communication Protocols	
Modbus Introduction to the Modbus Protocol	
Profibus DP	
Chapter 5: Operations Page	
Analog Input Menu	
Digital Input/Output Menu	
Limit Menu	
Alarm Menu	. 51

Table of Contents (cont.)

Chapter 6: Setup Page	54
Analog Input Menu	. 57
Digital Input/Output Menu	. 60
Limit Menu	. 62
Output Menu	. 64
Alarm Menu	. 66
Function Key	. 70
Global Menu	
Communications Menu	. 72
Chapter 7: Factory Page	81
Custom	. 83
Lock Menu	. 84
Unlock Menu	. 86
Diagnostics Menu	. 87
Calibration Menu	. 89
Chapter 8: Features	91
Changing PM Integrated Model Number to PM Express	. 92
Saving and Restoring Settings	. 94
Programming the Home Page	. 94
Inputs	. 94
Calibration Offset	
Calibration	
Filter Time Constant	
Sensor Selection.	
Set Point Minimum and Maximum	
Scale High and Scale Low	
Range High and Range Low	
Outputs	. 98
Retransmitting a Process Value or Set Point	. 98
Resetting a Tripped Limit	
Alarms	
Process Alarms	
Set Points	
Hysteresis	
Latching	
-	100
Blocking	
Using Lockout and Password Security	
Using Lockout Method 1 (Read and Set Lock)	
Using Lockout Method 2 (Password Enable)	
Coming Econodic Información & (1 dosword Eliablo)	100

Table of Contents (cont.)

Heiza Programmable Memory Blocks.....

Modbus - Using Programmable Memory Blocks 1	05
CIP - Communications Capabilities	06
CIP Implicit Assemblies	07
Profibus DP - (Decentralized Peripherals)	08
Software Configuration	08
Using EZ-ZONE Configurator Software	08
Chapter 9: Appendix	12
Troubleshooting Alarms, Errors and Control Issues 1	12
Modbus - Programmable Memory Blocks 1	17
Modbus - Programmable Memory Blocks	18
CIP Implicit Assembly Structures	20
PM Specifications	28
Ordering Information for Enhanced Limit Controller Models 13	34
Ordering Information for Limit Controller Models	35
How to Reach Us	37

1

Chapter 1: Overview

Available EZ-ZONE PM Literature and Resources

Document Title and Part Number	Description	
EZ-ZONE PM Integrated PID Controller User's Guide, part number: 0600-0059-0000	Describes how to connect and use an advanced PID loop controller. This particular model can be ordered with two loops of PID control and integrated limit controller with up to 4 outputs. Like all PM controllers, it comes with Standard Bus communications while also offering as an option many of the most popular industrial protocols available today.	
EZ-ZONE PM PID Controller User's Guide, part number: 0600-0058-0000	Describes how to connect and use an advanced PID loop controller. This particular model is limited to one control loop and 2 outputs. Like all PM controllers, it comes with Standard Bus communications. As an additional option, it can also be ordered with Modbus® RTU communications.	
EZ-ZONE Remote User Interface (RUI) User's Guide, part number: 0600-0060-0000	The RUI provides a visual remote LED display for the PM/RM configuration and setup menus. This document illustrates and describes connections and also describes the Home Page for each EZ-ZONE device as viewed from the RUI.	
EZ-ZONE PM Specification Sheet, part number: winez- pm0516	Describes the PM family hardware options, features, benefits and technical specifications.	
Watlow Support Tools DVD, part number: 0601-0001-0000	Contains all related user documents, tutorial videos, application notes, utility tools, etc	

The DVD described above ships with the product and as stated contains all of the literature above as well as much more. If the DVD is not available one can be acquired by contacting Watlow Customer Service at 1-507-454-5300.

As an alternative to the DVD, all of the user documentation described above can also be found on the Watlow website. Click on the following link to find your document of choice: http://www.watlow.com/literature/index.cfm. Once there, simply type in the desired part number (or name) into the search box and download free copies. Printed versions of all user documents can also be purchased here as well.

Your Comments are Appreciated

In an effort to continually improve our technical literature and ensure that we are providing information that is useful to you, we would very much appreciate your comments and suggestions. Please send any comments you may have to the following e-mail address:

TechlitComments@watlow.com

Introduction

The EZ-ZONE® PM takes the pain out of solving your thermal loop requirements. Watlow's EZ-ZONE PM controllers offer options to reduce system complexity and the cost of control loop ownership. You can order the EZ-ZONE PM as a Limit, PID or an Integrated PID/Limit controller. You can also select from a number of industrial serial communications protocols as options to enable connectivity into a distributed control system or to simply help manage system performance over a network.

Standard Features and Benefits

EZ-ZONE configuration communications and software

Saves time and improves the reliability of controller set up

FM Approved Over-under Limit with Auxiliary Outputs

- Increases user and equipment safety for over-under temperature conditions
- To meet agency requirements, output 2 is the fixed limit output.

Parameter Save & Restore Memory

Reduces service calls and down time

Agency approvals: UL® Listed, CSA, CE, RoHS, W.E.E.E. FM

- Assures prompt product acceptance
- Reduces end product documentation costs
- Semi F47-0200

P3T Armor Sealing System

- NEMA 4X and IP65 offers water and dust resistance, can be cleaned and washed down (indoor use only)
- Backed up by UL 50 independent certification to NEMA 4X specification

Three-year warranty

Demonstrates Watlow's reliability and product support

Touch-safe Package

• IP2X increased safety for installers and operators

EZ-Key/s

• Programmable EZ-Key enables simple one-touch operation of repetitive user activities

Programmable Menu System

Reduces set up time and increases operator efficiency

Full Featured Alarms

- Improves operator recognition of system faults
- Provides control of auxiliary devices

Three-year warranty

Demonstrates Watlow's reliability and product support

A Conceptual View of the PM

The flexibility of the PM software and hardware allows for a large range of configurations. Acquiring a better understanding of the controller's overall functionality and capabilities while at the same time planning out how the controller can be used will deliver maximum effectiveness in your application.

It is useful to think of the controller in terms of functions; there are internal and external functions. An input and an output would be considered external functions where the limit, PID or alarm function would be an internal function. Information flows from an input function to an internal function to an output function when the controller is properly configured. A single PM controller can carry out several functions at the same time, for instance (but not limited to), PID control, checking for a limit condition, monitoring for several different alarm situations, etc... To ensure that the application requirements are being met, it is important to first give thought to each external process and then configuring the controller's internal functions to properly accommodate the application requirements.

Inputs

The inputs provide the information that any given programmed procedure can act upon. In a simple form, this information may come from an operator pushing a button or from a sensor monitoring the temperature of a part being heated or cooled.

Each analog input typically uses a thermocouple or RTD to read the process temperature. It can also read volts, current or resistance, allowing it to use various devices to read a wide array of values. The settings in the Analog Input Menu (Setup Page) for each analog input must be configured to match the device connected to that input.

A PM with digital input/output (DIO) hardware includes two sets of terminals where each of which can be used as either an input or an output. Each pair of terminals must be configured to function as either an input or output with the direction parameter in the Digital Input/Output Menu (Setup Page). Each digital input reads whether a device is active or inactive.

The Function or EZ Key/s (PM4/6/8/9 only) on the front panel of the PM also operates as a digital input by toggling the function assigned to it in the Digital Input Function parameter in the Function Key Menu (Setup Page).

Internal Functions

The controller will use input signals to calculate a value and then perform an operation. A sample of some functions may be as simple as:

- Detect a failure of the primary sensing device and trip a contactor to remove power from the heating element
- Reading a digital input to set a state to true or false
- Evaluate an incoming temperature to determine an alarm state (on or off)
- Compare an input value to the set point and calculate the optimal power for a heater

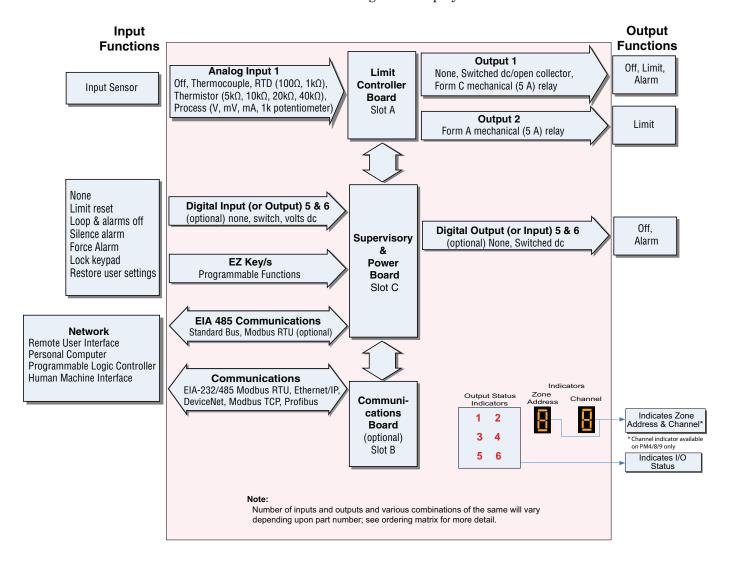
To set up a function, it's important to define the source, or instance, to use. For example, if the control is equipped with DIO they can be configured to respond to an alarm. If configured as such, the digital output must be tied to the desired alarm instance (1 to 4). Using this as an example, the Function for the digital output would be defined as an Alarm where the Instance would be selected as 1, 2, 3, or 4 corresponding to the alarm instance that will drive the output.

Keep in mind that a function is a user-programmed internal process that does not execute any action outside of the controller. To have any effect outside of the controller, an output must be configured to respond to a function.

Outputs

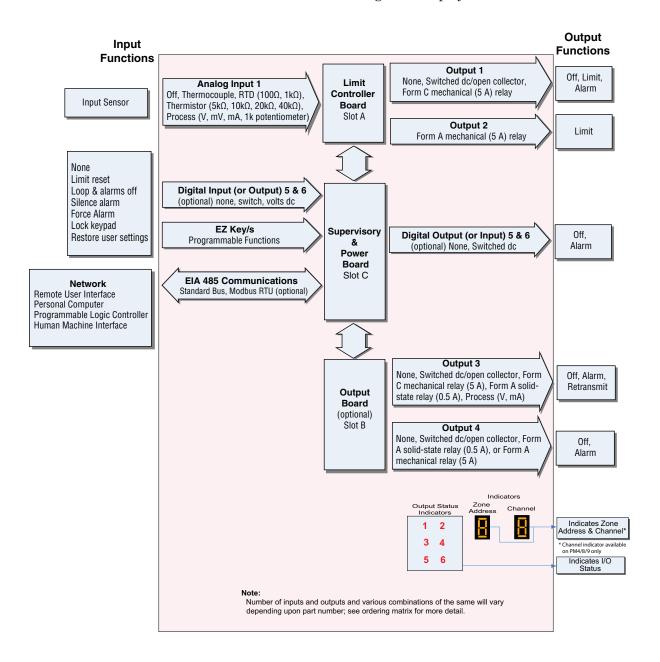
Outputs can perform various functions or actions in response to information provided by a function such as, removal of the control voltage to a contactor; operating a heater, turning a light on or off, unlocking a door, etc...

Assign a Function to any available output on the Setup Page within the Output Menu or Digital Input/Output Menu. Then select which instance of that function will drive the selected output. For example, you might assign an output to respond to alarm 4 (instance 4).

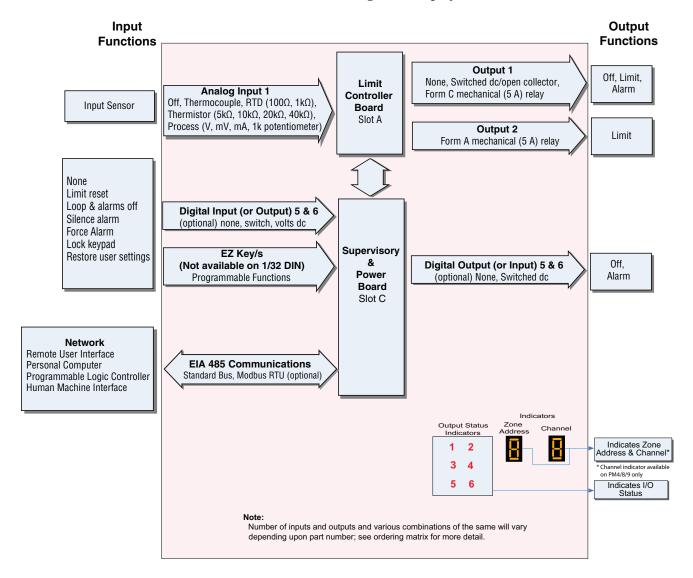

You can assign more than one output to respond to a single instance of a function. For example, alarm 2 could be used to trigger a light connected to output 1 and a siren connected to digital output 5.

Input Events and Output Events

Input events are internal states that are set by the digital inputs. Digital Input 5 provides the state of input event 1, and Digital Input 6 provides the state of input event 2. The setting of Digital Input Function (Setup Page, Digital Input/Output Menu) does not change the relationship between the input and the event. An input will still control the input event state, even if Digital Input Function is set to None.


EZ-ZONE® PM Enhanced Limit PM4/6/8/9 Models - System Diagram (with communications options 2, 3, 5 or 6)

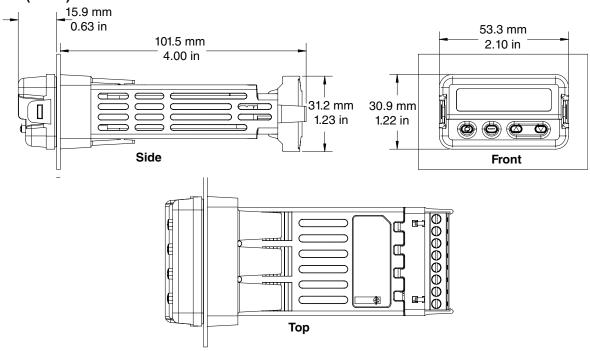
Universal Sensor Input, Configuration Communications, Red/Green 7-Segment Display


EZ-ZONE® PM Enhanced Limit PM4/6/8/9 Models - Input/Output (no communications options 2, 3, 5 or 6)

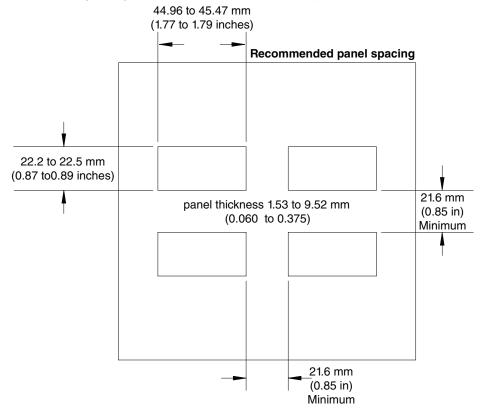
Universal Sensor Input, Configuration Communications, Red/Green 7-Segment Display

EZ-ZONE® PM Limit All Models System Diagram

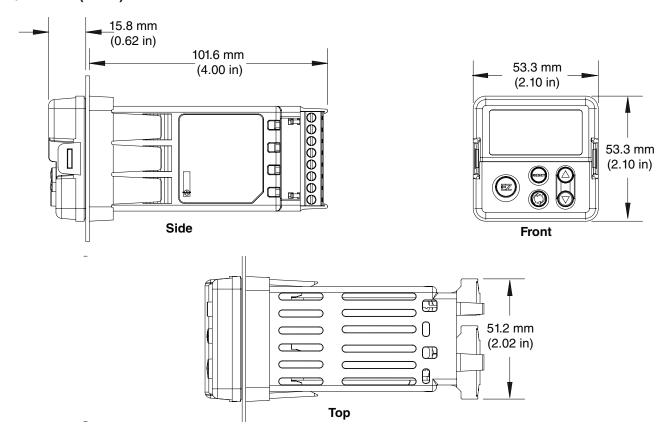
Universal Sensor Input, Configuration Communications, Red/Green 7-Segment Display

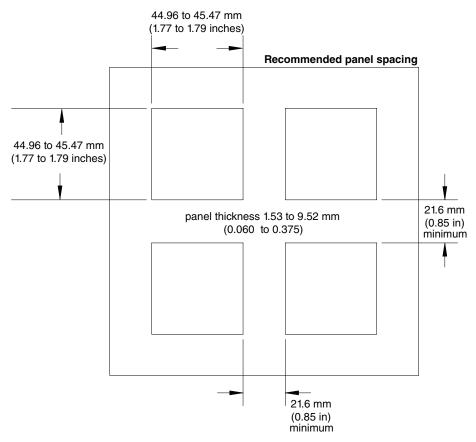


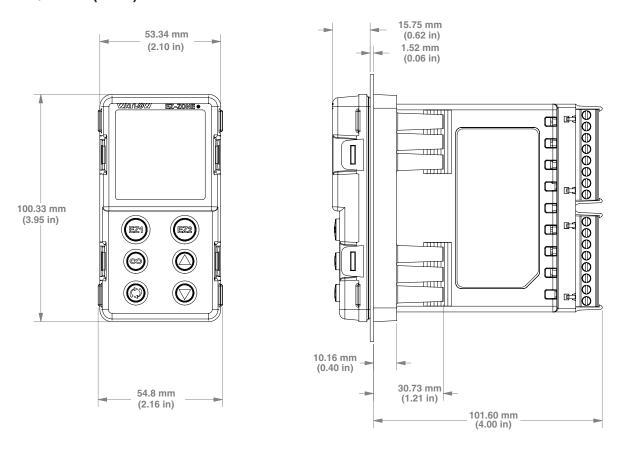
2

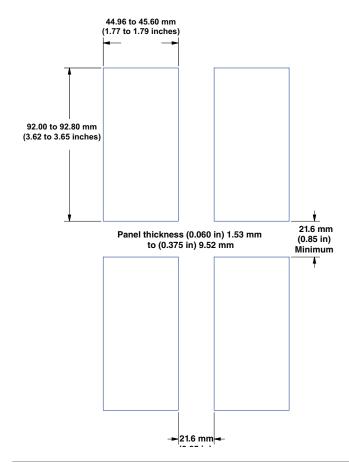

Chapter 2: Install and Wire

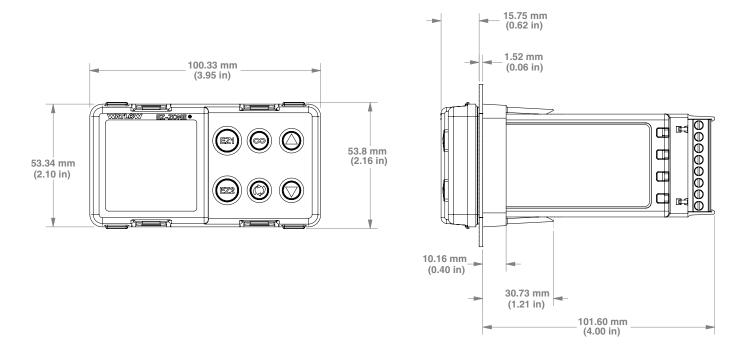
Dimensions

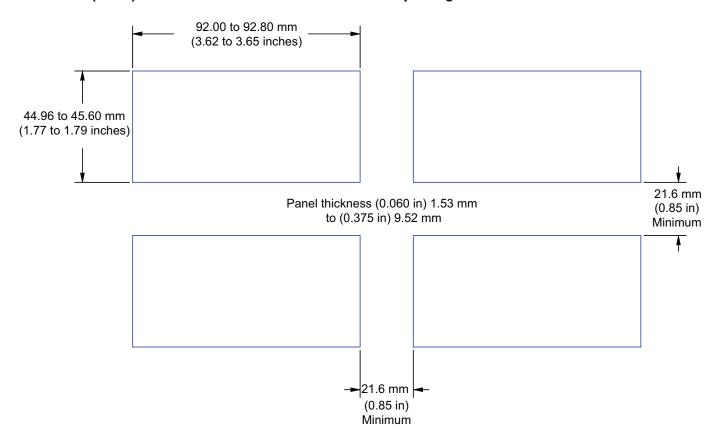

1/32 DIN (PM3)

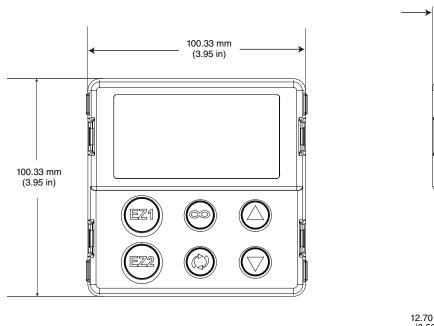

1/32 DIN (PM3) Recommended Panel Spacing

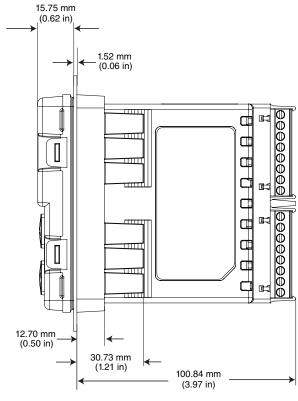

1/16 DIN (PM6)


1/16 DIN (PM6) Recommended Panel Spacing

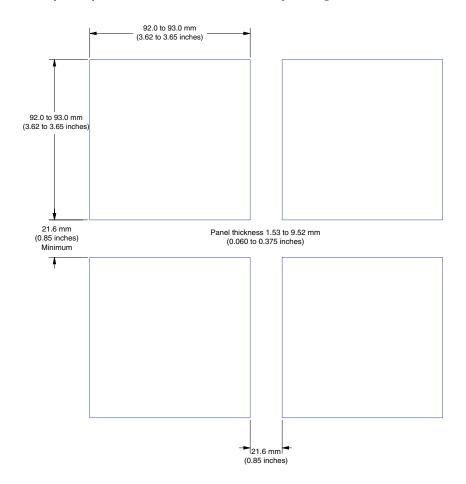

1/8 DIN (PM8) Vertical


1/8 DIN (PM8) Vertical Recommended Panel Spacing


1/8 DIN (PM9) Horizontal

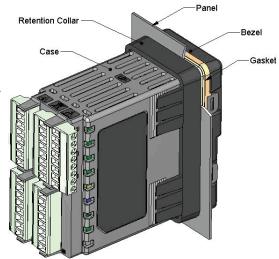


1/8 DIN (PM9) Horizontal Recommended Panel Spacing



1/4 DIN (PM4)

1/4 DIN (PM4) Recommended Panel Spacing



Installation

1. Make the panel cutout using the mounting template dimensions in this chapter. Insert the case assembly into the panel cutout.

2. While pressing the case assembly firmly against the panel, slide the mounting collar over the back of the controller. If the installation does not require a NEMA 4X seal, simply slide together until the gasket is compressed.

3. For a NEMA 4X (UL50, IP65) seal, alternately place and push the blade of a screwdriver against each of the the four corners of the mounting collar assembly. Apply pressure to the face of the controller while pushing with the screwdriver. Don't be afraid to apply enough pressure to properly install the controller. The seal system is compressed more by mating the mounting collar tighter to the front pan-

el (see pictures above). If you can move the case assembly back and forth in the cutout, you do not have a proper seal. The tabs on each side of the mounting collar have teeth that latch into the ridges on the sides of the controller. Each tooth is staggered at a different depth from the front so that only one of the tabs, on each side, is locked onto the ridges at a time.

Slide the mounting collar over the back of the controller.

Place the blade of a screwdriver in any of the corner of the mounting collar assembly.

Note:

There is a graduated measurement difference between the upper and lower half of the display to the panel. In order to meet the seal requirements mentioned above, ensure that the distance from the front of the top half of the display to the panel is 16 mm (0.630 in.) or less, and the distance from the front of the bottom half and the panel is 13.3 mm (0.525 in.) or less.

Removing the Mounted Controller from Its Case

1. From the controller's face, pull out the tabs on each side until you hear it click.

Pull out the tab on each side until you hear it click.

Grab the unit above and below the face and pull forward.

2. Grab the unit above and below the face with two hands and pull the unit out. On the PM4/8/9 controls slide a screwdriver under the pry tabs and turn.

Returning the Controller to its Case

1. Ensure that the orientation of the controller is correct and slide it back into the housing.

Note:

The controller is keyed so if it feels that it will not slide back in do not force it. Check the orientation again and reinsert after correcting.

2. Using your thumbs push on either side of the controller until both latches click.

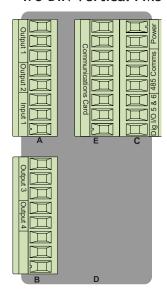
Chemical Compatibility

This product is compatible with acids, weak alkalis, alcohols, gamma radiation and ultraviolet radiation. This product is not compatible with strong alkalis, organic solvents, fuels, aromatic hydrocarbons, chlorinated hydrocarbons, esters and keytones.

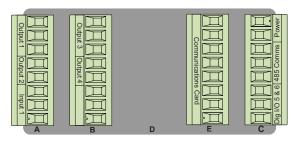
Wiring

Slot A Slot B Slot I		Slot E	Terminal Function Configuration			
Inputs			Universal, RTD and Thermistor Inputs			
T1 S1 R1			S2 (RTD) or current + S3 (RTD), thermocouple -, current -, volts - or potentiometer wiper, thermistor S1 (RTD), thermocouple + or volts +, thermistor, potentiometer	Universal Sensor Input 1: all configurations		
		Out	outs		Switched dc/open collector	
1	2	3	4		•	
X1 W1 Y1		X3 W3 Y3			common (Any switched dc output can use this common.) dc- (open collector) dc+	Output 1: PM [4, 6, 8, 9] [C] AAA Output 3: PM [4, 6, 8, 9] [C] _ AAA
			,		Switched	dc
			W4 Y4		dc- dc+	Output 4: PM [4, 6, 8, 9]
					Universal Pr	rocess
		F3 G3 H3			voltage or current - voltage + current +	Output 3: PM [4, 6, 8, 9] [F] _ AAA
					Mechanical Relay	5 A, Form C
L1 K1 J1		L3 K3 J3			normally open common normally closed	Output 1: PM [4, 6, 8, 9] E AAA Output 3: PM [4, 6, 8, 9] [E] _ AAA
					Mechanical Relay	5 A, Form A
	L2 K2		L4 K4		normally open common	Output 2: PM [4, 6, 8, 9] J AAA Output 4: PM [4, 6, 8, 9] _ [J] AAA
		,			Solid-State Relay 0	.5 A, Form A
		L3 K3	L4 K4		normally open common	output 3: PM [4, 6, 8, 9] [K] _ AAA output 4: PM [4, 6, 8, 9] [K] AAA
	Com	mur	icat	ions	Modbus RTU 232/485	Communications
CB CA CC CB CA C5 C3		A C B A 5	CB CA CC CB CA C5 C3	Modbus RTU EIA-485 T+/R+ Modbus RTU EIA-485 T-/R- Modbus RTU EIA-485 common Modbus RTU EIA-485 T+/R+ Modbus RTU EIA-485 T-/R- Modbus RTU EIA-232 common Modbus RTU EIA-232 to DB9 pin 2 Modbus RTU EIA-232 to DB9 pin 3	Slot B: PM6[2] A A A AAA Slot E: PM [4, 8, 9][2] A A A AAA	
					DeviceNet™ Com	munications
V+ V+ CH CH SH SH CL CL V- V-		CH SH CL	DeviceNet [™] power Positive side of DeviceNet [™] bus Shield interconnect Negative side of DeviceNet [™] bus DeviceNet [™] power return	DeviceNet™ Communications Slot B: PM6[5] A A A AAA Slot E: PM [4, 8, 9][5] A A A AAA		

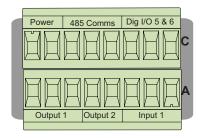
Wiring (cont.)

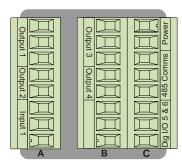

Slot A	Slot B	Slot E	Terminal Function	Configuration	
Communications (cont.)		(cont.)	EtherNet/IP™ and Modbus® TCP		
	E8	E8	EtherNet/IP™ and Modbus TCP unused	Slot B:	
	E7	E7	EtherNet/IP™ and Modbus TCP unused	PM6[3] A A A AAA	
	E6	E6	EtherNet/IP™ and Modbus TCP receive -	Slot E:	
	E5	E5	EtherNet/IP™ and Modbus TCP unused	PM [4, 8, 9][3] A A A AAA	
	E4	E4	EtherNet/IP™ and Modbus TCP unused		
	E3	E3	EtherNet/IP™ and Modbus TCP receive +		
	E2	E2	EtherNet/IP™ and Modbus TCP transmit -		
	E1	E1	EtherNet/IP™ and Modbus TCP transmit +		
			Profibus DP Communications		
	VP	VP	Voltage Potential	Slot B:	
	В	В	EIA-485 T+/R+	PM6[6] A A A AAA	
	Α	Α	EIA-485 T-/R-	Slot E:	
	DG	DG	Digital ground (common)	PM [4, 8, 9][6] A A A AAA	
	trB	trB	Termination resistor B		
	В	В	EIA-485 T+/R+		
	Α	Α	EIA-485 T-/R-		
	trA	trA	Termination resistor A		

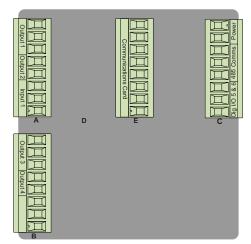
Terminal Definitions for Slot C


101111111	Terminal Definitions for Stot C				
Slot C	Terminal Function	Configuration			
	Power				
98	Power input: ac or dc+	all			
99	Power input: ac or dc-				
	Standard Bus or Modbu	is EIA-485			
CC	Standard Bus or Modbus RTU EIA-485	Standard Bus or Modbus			
CA	Common	PM[1] AAA			
СВ	Standard Bus or Modbus RTU EIA-485				
	T-/R-				
	Standard Bus or Modbus RTU EIA-485 T+/				
	R+				
	Standard Bus or Modbus I	EIA-232/485			
CF	Standard Bus EIA-485 common	PM[A, 2 or 3] AAA			
CD	Standard Bus EIA-485 T-/R-				
CE	Standard Bus EIA-485 T+/R+				
2 - Digital I/O Points					
B5	Digital input-output common	PM [2] AAA			
D6	Digital input or output 6	PM [4] AAA			
D5	Digital input or output 5				

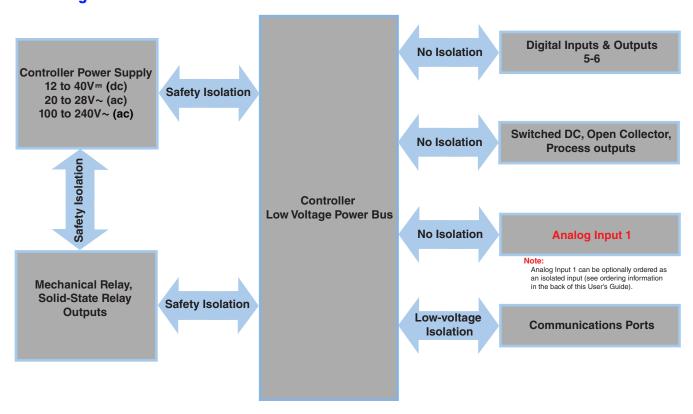
Slot Orientation - Back View


1/8 DIN Vertical PM8


1/8 DIN Horizontal PM9


1/32 DIN Horizontal PM3

1/16 DIN Vertical PM6


1/4 DIN Vertical PM4

Note:

Slot B above can also be configured with a communications card.

PM Integrated Isolation Block

Low-voltage Isolation: 42V peak Safety Isolation: 2300V~ (ac)

Warning: 🛕

Use National Electric (NEC) or other country-specific standard wiring and safety practices when wiring and connecting this controller to a power source and to electrical sensors or peripheral devices. Failure to do so may result in damage to equipment and property, and/or injury or loss of life.

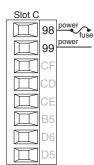
Note:

Maximum wire size termination and torque rating:

- 0.0507 to 3.30 mm² (30 to 12 AWG) single-wire termination or two 1.31 mm² (16 AWG)
- 0.56 Nm (5.0 in-lb.) torque

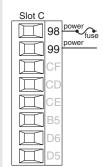
Note:

Adjacent terminals may be labeled differently, depending on the model number.

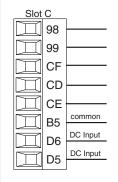

Note:

To prevent damage to the controller, do not connect wires to unused terminals.

Note:


Maintain electrical isolation between analog input 1, digital input-outputs, switched dc/open collector outputs and process outputs to prevent ground loops.

Low Power


- PM_ _ [3,4] _ _ _ A _ _ _ _ _
- Minimum/Maximum Ratings
- 12 to 40V= (dc)
- 20 to 28V~ (ac) Semi Sig F47
- 47 to 63 Hz
- 14VA maximum power consumption (PM4, 8 and 9)
- 10VA maximum power consumption (PM6)

High Power

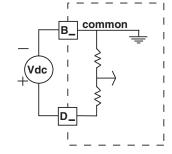
- PM_ _ [1,2] _ _ _ A _ _ _ _
- Minimum/Maximum Ratings
- 85 to 264V~ (ac)
- 100 to 240V~ (ac) Semi Sig F47
- 47 to 63 Hz
- 14VA maximum power consumption (PM4, 8 and 9)
- 10VA maximum power consumption (PM6)

Digital Input 5 - 6

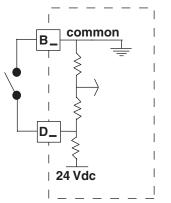
Digital Input

- Update rate 10 Hz
- Dry contact or dc voltage

DC Voltage


- Input not to exceed 36V= (dc) at 3mA
- Input active when > 3V= (dc) @ 0.25mA
- Input inactive when < 2V

Dry Contact


- Input inactive when $> 500 \Omega$
- Input active when < 100Ω
- Maximum short circuit 13mA

Voltage Input

PM _ _ [2,4] _ _ - _ A _ _ _ _

Dry Contact

Use National Electric (NEC) or other country-specific standard wiring and safety practices when wiring and connecting this controller to a power source and to electrical sensors or peripheral devices. Failure to do so may result in damage to equipment and property, and/or injury or loss of life.

Note:

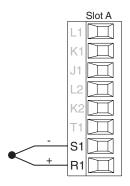
Maximum wire size termination and torque rating:

- 0.0507 to 3.30 mm² (30 to 12 AWG) single-wire termination or two 1.31 mm² (16 AWG)
- 0.56 Nm (5.0 in-lb.) torque

Note:

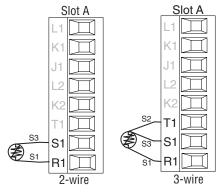
Adjacent terminals may be labeled differently, depending on the model number.

Note:

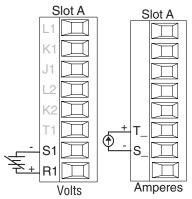

To prevent damage to the controller, do not connect wires to unused terminals.

Note:

Maintain electrical isolation between analog input 1, digital input-outputs, switched dc/open collector outputs and process outputs to prevent ground loops.


Input 1 Thermocouple

- $2k\Omega$ maximum source resistance
- $>20M\Omega$ input impedance
- 3µA open-sensor detection
- Thermocouples are polarity sensitive. The negative lead (usually red) must be connected to \$1
- To reduce errors, the extension wire for thermocouples must be of the same alloy as the thermocouple


Input 1 RTD

PM_ [L] _ _ - _ A _ _ _ _

- Platinum, 100 and $1k\Omega @ 0^{\circ}C$
- Calibration to DIN curve (0.00385 $\Omega/\Omega/^{\circ}C$)
- 20Ω total lead resistance
- RTD excitation current of 0.09mA typical. Each ohm of lead resistance may affect the reading by 0.03°C.
- For 3-wire RTDs, the S1 lead (usually white) must be connected to R1 and/or R2
- For best accuracy use a 3-wire RTD to compensate for lead-length resistance. All three lead wires must have the same resistance

Input 1 Process

PM_ [L] _ _ - _ A _ _ _ _ _

- 0 to 20mA @ 100Ω input impedance
- 0 to 10V= (dc) @ 20kΩ input impedance
- 0 to 50mV= (dc) @ 20kΩ input impedance
- Scalable

Use National Electric (NEC) or other country-specific standard wiring and safety practices when wiring and connecting this controller to a power source and to electrical sensors or peripheral devices. Failure to do so may result in damage to equipment and property, and/or injury or loss of life.

Note:

Maximum wire size termination and torque rating:

- 0.0507 to 3.30 mm² (30 to 12 AWG) single-wire termination or two 1.31 mm² (16 AWG)
- 0.56 Nm (5.0 in-lb.) torque

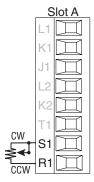
Note:

Adjacent terminals may be labeled differently, depending on the model number.

Note:

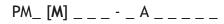
To prevent damage to the controller, do not connect wires to unused terminals.

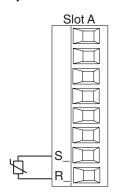
Note:


Maintain electrical isolation between analog input 1, digital input-outputs, switched dc/open collector outputs and process outputs to prevent ground loops.

Quencharc Note:

Switching pilot duty inductive loads (relay coils, solenoids, etc.) with the mechanical relay, solid state relay or open collector output options requires use of an R.C. suppressor.


Input 1 Potentiometer



• Use a $1k\Omega$ potentiometer.

Input 1 Thermistor

>20MΩ input impedance
3µA open-sensor detection

Digital Output 5 - 6

2101	,	
	98	
	99	
	CF	
M	CD	
\square	CE	
	B5	common
	טטן	switched dc
	D5	switched dc

Digital Output

- SSR drive signal
- Update rate 10 Hz
- Maximum open circuit voltage is 22 to 25V= (dc)
- PNP transistor source
- Typical drive; 21mA
 @ 4.5V= (dc) for
 DO5, and 11mA @
 4.5V for DO6
- Current limit 24mA for Output 5 and 12mA Output 6
- Output 5 capable of driving one 3-pole DIN-A-MITE
- Output 6 capable of driving one 1-pole DIN-A-MITE

Note:

See output curves below.

Use National Electric (NEC) or other country-specific standard wiring and safety practices when wiring and connecting this controller to a power source and to electrical sensors or peripheral devices. Failure to do so may result in damage to equipment and property, and/or injury or loss of life.

Note:

Maximum wire size termination and torque rating:

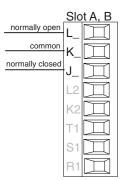
- 0.0507 to 3.30 mm² (30 to 12 AWG) single-wire termination or two 1.31 mm² (16 AWG)
- 0.56 Nm (5.0 in-lb.) torque

Note:

Adjacent terminals may be labeled differently, depending on the model number.

Note:

To prevent damage to the controller, do not connect wires to unused terminals.

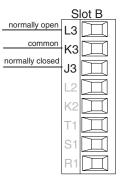

Note:

Maintain electrical isolation between analog input 1, digital input-outputs, switched dc/open collector outputs and process outputs to prevent ground loops.

Quencharc Note:

Switching pilot duty inductive loads (relay coils, solenoids, etc.) with the mechanical relay, solid state relay or open collector output options requires use of an R.C. suppressor.

Output 1, 3 Mechanical Relay, Form C

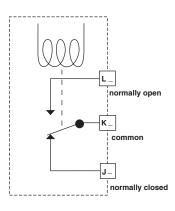


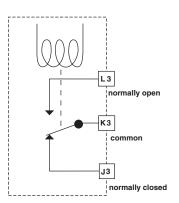
- 5A at 240V~ (ac) or 30V= (dc) maximum resistive load
- 20mA at 24V minimum load
- 125VA pilot duty at 120/240V~ (ac), 25VA at 24V~ (ac)
- 100,000 cycles at rated load
- Output does not supply power.
- For use with ac or dc

See Quencharc note

Outputs 1 and 3:

Output 3 Mechanical Relay, Form C




- 5A at 240V~ (ac) or 30V= (dc) maximum resistive load
- 20mA at 24V minimum load
- 125VA pilot duty at 120/240V~ (ac), 25VA at 24V~ (ac)
- 100,000 cycles at rated load
- Output does not supply power.
- · For use with ac or dc

See Quencharc note

Outputs 1 and 3:

_ _ _

Warning: 🛕

Use National Electric (NEC) or other country-specific standard wiring and safety practices when wiring and connecting this controller to a power source and to electrical sensors or peripheral devices. Failure to do so may result in damage to equipment and property, and/or injury or loss of life.

Note:

Maximum wire size termination and torque rating:

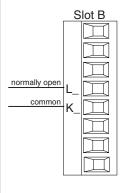
- 0.0507 to 3.30 mm² (30 to 12 AWG) single-wire termination or two 1.31 mm² (16 AWG)
- 0.56 Nm (5.0 in-lb.) torque

Note:

Adjacent terminals may be labeled differently, depending on the model number.

Note:

To prevent damage to the controller, do not connect wires to unused terminals.

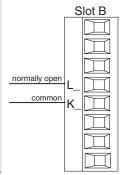

Note:

Maintain electrical isolation between analog input 1, digital input-outputs, switched dc/open collector outputs and process outputs to prevent ground loops.

Quencharc Note:

Switching pilot duty inductive loads (relay coils, solenoids, etc.) with the mechanical relay, solid state relay or open collector output options requires use of an R.C. suppressor.

Output 2, 4 Mechanical Relay, Form A


- 5A at 240V~ (ac) or 30V= (dc) maximum resistive load
- 20mA at 24V minimum load
- 125VA pilot duty @ 120/240V~ (ac), 25VA at 24V~ (ac)
- 100,000 cycles at rated load
- Output does not supply power
- For use with ac or dc

See Quencharc note

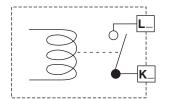
Outputs 2 and 4:

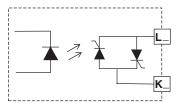
PM_ _ _ [J] - _ A _ [J] _

Output 3, 4 Solid-State Relay, Form A

- 0.5A at 20 to 264V~

 (ac) maximum resistive
 load
- 20VA 120/240V~ (ac) pilot duty
- Opto-isolated, without contact suppression
- Maximum off state leakage of 105µA
- Minimum holding current of 10mA
- Output does not supply power
- Do not use on dc loads.


See Quencharc note


Output 2: (L2, K2) PM _ _ _ [K] - _ _ _ _

Output 4: (L4, K4)

PM _ _ _ _ - [K] _

_ -

Warning: <u>1</u>

Use National Electric (NEC) or other country-specific standard wiring and safety practices when wiring and connecting this controller to a power source and to electrical sensors or peripheral devices. Failure to do so may result in damage to equipment and property, and/or injury or loss of life.

Note:

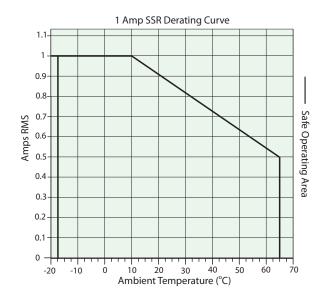
Maximum wire size termination and torque rating:

- 0.0507 to 3.30 mm² (30 to 12 AWG) single-wire termination or two 1.31 mm² (16 AWG)
- 0.56 Nm (5.0 in-lb.) torque

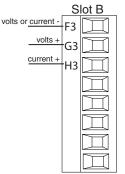
Note:

Adjacent terminals may be labeled differently, depending on the model number.

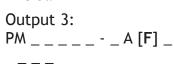
Note:

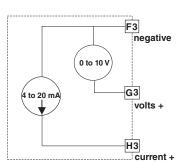

To prevent damage to the controller, do not connect wires to unused terminals.

Note:


Maintain electrical isolation between analog input 1, digital input-outputs, switched dc/open collector outputs and process outputs to prevent ground loops.

Quencharc Note:


Switching pilot duty inductive loads (relay coils, solenoids, etc.) with the mechanical relay, solid state relay or open collector output options requires use of an R.C. suppressor.



Output 3 Universal Process

- 0 to 20mA into 800 Ω maximum load
- 0 to 10V → (dc) into 1 kΩ minimum load
- Scalable
- Output supplies power
- Cannot use voltage and current outputs at same time
- Output may be used as retransmit or control.

Use National Electric (NEC) or other country-specific standard wiring and safety practices when wiring and connecting this controller to a power source and to electrical sensors or peripheral devices. Failure to do so may result in damage to equipment and property, and/or injury or loss of life.

Note:

Maximum wire size termination and torque rating:

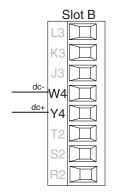
- 0.0507 to 3.30 mm² (30 to 12 AWG) single-wire termination or two 1.31 mm² (16 AWG)
- 0.56 Nm (5.0 in-lb.) torque

Note:

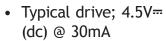
Adjacent terminals may be labeled differently, depending on the model number.

Note:

To prevent damage to the controller, do not connect wires to unused terminals.

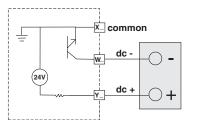

Note:

Maintain electrical isolation between analog input 1, digital input-outputs, switched dc/open collector outputs and process outputs to prevent ground loops.


Quencharc Note:

Switching pilot duty inductive loads (relay coils, solenoids, etc.) with the mechanical relay, solid state relay or open collector output options requires use of an R.C. suppressor.

Output 4 Switched DC


- Maximum open circuit voltage is 22 to 25V= (dc)
- 30mA max. per single output / 40mA max. total per paired outputs (1 & 2, 3 & 4)

- Short circuit limited to <50mA
- NPN transistor sink
- Use dc- and dc+ to drive external solid-state relay
- 1-pole DIN-A-MITE: up to 4 in parallel or 4 in series
- 2-pole DIN-A-MITE: up to 2 in parallel or 2 in series
- 3-pole DIN-A-MITE: up to 2 in series

Output 4:

PM _ _ _ - _ - _ A _ [C]

Use National Electric (NEC) or other country-specific standard wiring and safety practices when wiring and connecting this controller to a power source and to electrical sensors or peripheral devices. Failure to do so may result in damage to equipment and property, and/or injury or loss of life.

Note:

Maximum wire size termination and torque rating:

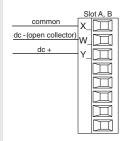
- 0.0507 to 3.30 mm² (30 to 12 AWG) single-wire termination or two 1.31 mm² (16 AWG)
- 0.56 Nm (5.0 in-lb.) torque

Note:

Adjacent terminals may be labeled differently, depending on the model number.

Note:

To prevent damage to the controller, do not connect wires to unused terminals.


Note:

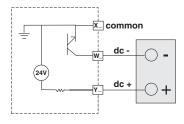
Maintain electrical isolation between analog input 1, digital input-outputs, switched dc/open collector outputs and process outputs to prevent ground loops.

Quencharc Note:

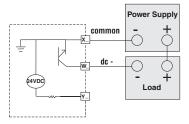
Switching pilot duty inductive loads (relay coils, solenoids, etc.) with the mechanical relay, solid state relay or open collector output options requires use of an R.C. suppressor.

Output 1, 3 Switched DC/Open Collector

Switched DC

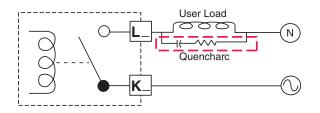

- Maximum open circuit voltage is 22 to 25V= (dc)
- 30mA max. per single output
- Typical drive; 4.5V= (dc) @ 30mA
- Short circuit limited to <50mA
- NPN transistor sink
- Use dc- and dc+ to drive external solid-state relay
- 1-pole DIN-A-MITE: up to 4 in parallel or 4 in series
- 2-pole DIN-A-MITE: up to
 2 in parallel or 2 in series
- 3-pole DIN-A-MITE: up to 2 in series

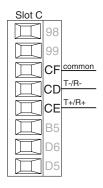
Open Collector


- 100mA maximum output current sink
- 30V== (dc) max. supply voltage
- Any switched dc output can use the common terminal.
- Use an external power supply to control a dc load, with the load positive to the positive of the power supply, the load negative to the open collector and common to the power supply negative.

See Quencharc note.

Switched DC


Open Collector

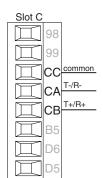

Output 1: (X1,-W1,+Y1)
PM _ _ _ [C] _ - _ _ _
Output 3: (X3,-W3,+Y3)
PM _ _ _ _ - [C] _

Quencharc Wiring Example

In this example the Quencharc circuit (Watlow part# 0804-0147-0000) is used to protect PM internal circuitry from the counter electromagnetic force from the inductive user load when de-engergized. It is recommended that this or an equivalent Quencharc be used when connecting inductive loads to PM outputs.

Standard Bus EIA-485 Communications

- Wire T-/R- to the A terminal of the EIA-485 port.
- Wire T+/R+ to the B terminal of the EIA-485 port.
- Wire common to the common terminal of the EIA-485 port.
- Do not route network wires with power wires. Connect network wires in daisy-chain fashion when connecting multiple devices in a network.
- Do not connect more than 16 EZ-ZONE PM controllers on a network.
- Maximum network length: 1,200 meters (4,000 feet)
- 1/8th unit load on EIA-485 bus

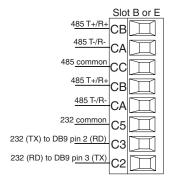

PM [3,4,6,8,9] _ _ _ - [*] _ _ _ _

* All models include Standard Bus communications (instance 1)

Note:

Do not leave a USB to EIA-485 converter connected to Standard Bus without power (i.e., disconnecting the USB end from the computer while leaving the converter connected on Standard Bus). Disturbance on the Standard Bus may occur.

Modbus RTU or Standard Bus EIA-485 Communications


- Wire T-/R- to the A terminal of the EIA-485 port.
- Wire T+/R+ to the B terminal of the EIA-485 port.
- Wire common to the common terminal of the EIA-485 port.
- Do not route network wires with power wires. Connect network wires in daisy-chain fashion when connecting multiple devices in a network.
- A termination resistor may be required. Place a 120 Ω resistor across T+/R+ and T-/R- of last controller on network.
- Only one protocol per port is available at a time: either Modbus RTU or Standard Bus.
- Do not connect more than 16 EZ-ZONE controllers on a Standard Bus network.
- Maximum number of EZ-ZONE controllers on a Modbus network is 247.
- Maximum network length: 1,200 meters (4,000 feet)
- 1/8th unit load on EIA-485 bus.
- Communications instance 1

PM [3,4,6,8,9] _ _ _ - [1] _ _ _ _ _

Note:

Do not leave a USB to EIA-485 converter connected to Standard Bus without power (i.e., disconnecting the USB end from the computer while leaving the converter connected on Standard Bus). Disturbance on the Standard Bus may occur.

EIA-232/485 Modbus RTU Communications

- Wire T-/R- to the A terminal of the EIA-485 port.
- Wire T+/R+ to the B terminal of the EIA-485 port.
- Wire common to the common terminal of the EIA-485 port.
- Do not route network wires with power wires. Connect network wires in daisy-chain fashion when connecting multiple devices in a network.
- A termination resistor may be required. Place a 120 Ω resistor across T+/R+ and T-/R- of last controller on network.
- Do not wire to both the EIA-485 and the EIA-232 pins at the same time.
- Two EIA-485 terminals of T/R are provided to assist in daisy-chain wiring.
- Do not connect more than one EZ-ZONE PM controller on an EIA-232 network.
- Maximum number of EZ-ZONE controllers on a Modbus network is 247.
- Maximum EIA-232 network length: 15 meters (50 feet)
- Maximum EIA-485 network length: 1,200 meters (4,000 feet)
- 1/8th unit load on EIA-485 bus.
- Communications instance 2

Modbus-IDA Terminal	EIA/TIA-485 Name	Watlow Terminal Label	Function
DO	Α	CA or CD	T-/R-
D1	В	CB or CE	T+/R+
common	common	CC or CF	common

EtherNet/IP™, PCCC and Modbus® TCP Communications

	Slot B, E		
unused	E8	M	
unused	E7	Ħ	
receive -	E6		
unused	E5	一	
unused	E4	一	
receive +	E3	一	
transmit -	E2	可	
transmit +	E1		
1			

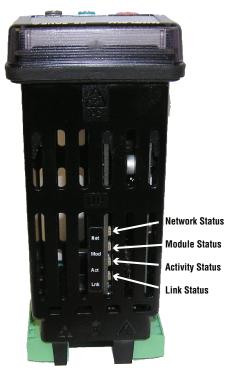
RJ-45 pin	T568B wire color	Signal	Slot B, E
8	brown	unused	E8
7	brown & white	unused	E7
6	green	receive -	E6
5	white & blue	unused	E5
4	blue	unused	E4
3	white & green	receive +	E3
2	orange	transmit -	E2
1	white & orange	transmit +	E1

- · Do not route network wires with power wires.
- Connect one Ethernet cable per controller to a 10/100 Mbps Ethernet switch. Both Modbus TCP and EtherNet/IP™ are available on the network.
- Communications instance 2

Slot B PM [6] _ _ _ - [3] _ _ _ _ -Slot E PM[4,8,9] _ _ _ - [3] _ _ _ _ -

Note:

When changing the fixed IP address cycle module power for new address to take effect.


Ethernet LED Indicators

Viewing the control from the front and then looking on top four LEDs can be seen aligned vertically front to back. The LEDs are identified accordingly: closest to the front reflects the Net-

work (Net) Status, Module (Mod) Status is next, Activity status follows and lastly, the LED closest to the rear of the control reflects the Link status.

Note:

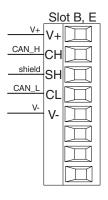
When using Modbus TCP, the Network Status and Module Status LEDs are not used.

Network Status

Indicator State	Summary	Requirement	
Steady Off	Not powered, no IP address	If the device does not have an IP address (or is powered off), the network status indicator shall be steady off.	
Flashing Green	No connections	tained an IP address, the network status indicator shall	
Steady Green	Connected	If the device has at least one established connection (even to the Message Router), the network status indicator shall be steady green.	
Flashing Red	Connection timeout	If one or more of the connections in which this device is the target has timed out, the network status indicator shall be flashing red. This shall be left only if all timed out connections are reestablished or if the device is re- set.	
Steady Red	Duplicate IP	If the device has detected that its IP address is already in use, the network status indicator shall be steady red.	
Flashing Green / Red	Self-test	While the device is performing its power up testing, the network status indicator shall be flashing green / red.	

Module Status

Indicator State	Summary	Requirement	
Steady Off	No power	If no power is supplied to the device, the module status indicator shall be steady off.	
Steady Green	Device operational	If the device is operating correctly, the module status indicator shall be steady green.	
Flashing Green	Standby	If the device has not been configured, the module status indicator shall be flashing green.	
Flashing Red	Minor fault	r fault If the device has detected a recoverable minor fault, the module status indicator shall be flashing red. NOTE: An incorrect or inconsistent configuration would be considered a minor fault.	
Steady Red	Major fault	If the device has detected a non-recoverable major fault, the module status indicator shall be steady red.	
Flashing Green / Red	Self-test	While the device is performing its power up testing, the module status indicator shall be flashing green / red.	


Activity Status

Indicator State	Summary	Requirement
Flashing Green	Detects activity	If the MAC detects activity, the LED will be flashing green.
Red		If the MAC detects a collision, the LED will be red.

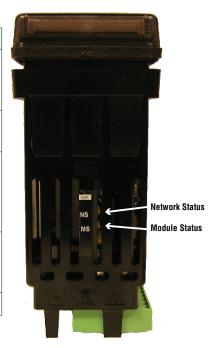
Link Status

Indicator State	Summary	Requirement
Steady Off	Not powered, unknown link speed	If the device cannot determine link speed or power is off, the network status indicator shall be steady off.
Green		If cable is wired and connected correctly, the LED will be Green.

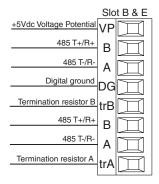
DeviceNet™ Communications

Terminal	Signal	Function
V+	V+	DeviceNet [™] power
СН	CAN_H	positive side of DeviceNet™ bus
SH	shield	shield interconnect
CL	CAN_L	negative side of DeviceNet™ bus
V-	V-	DeviceNet™ power return

Communications instance 2


Slot B (PM [6] _ _ _ - [5] _ _ _ _) Slot E (PM [4,8,9] _ _ _ - [5] _ _ _ _)

DeviceNet LED Indicators


Viewing the control from the front and then looking on top two LEDs can be seen aligned vertically front to back. The LED closest to the front is identified as the network (Net) LED where the one next to it would be identified as the module (Mod) LED.

Network Status

Indicator LED	Description
Off	The device is not online and has not completed the duplicate MAC ID test yet. The device may not be powered.
Green	The device is online and has connections in the established state (allcated to a Master).
Red	Failed communication device. The device has detected an error that has rendered it incapable of communicating on the network (duplicate MAC ID or Bus-off).
Flashing Green	The device is online, but no connection has been allocated or an explicit connection has timed out.
Flashing Red	A poll connection has timed out.

Profibus DP Communications

- Wire T-/R- to the A terminal of the EIA-485 port.
- Wire T+/R+ to the B terminal of the EIA-485 port.
- Wire Digital Ground to the common terminal of the EIA-485 port.
- Do not route network wires with power wires. Connect network wires in daisy-chain fashion when connecting multiple devices in a network.
- A termination resistor should be used if this control is the last one on the network.
- If using a 150 Ω cable Watlow provides internal termination. Place a jumper across pins trB and B and trA and A.
- If external termination is to be used with a 150 Ω cable place a 390 Ω resistor across pins VP and B, a 220 Ω resistor across pins B and A, and lastly, place a 390 Ω resistor across pins DG and A.
- Do not connect more than 32 EZ-ZONE PM controllers on any given segment.
- Maximum EIA-485 network length: 1,200 meters (4,000 feet)
- 1/8th unit load on EIA-485 bus
- When termination jumpers are in place, there is 392 ohm pull up resistor to 5V and 392 ohm pull down resistor to DP. There is also a 221 ohm resistor between A and B.
- Communications instance 2

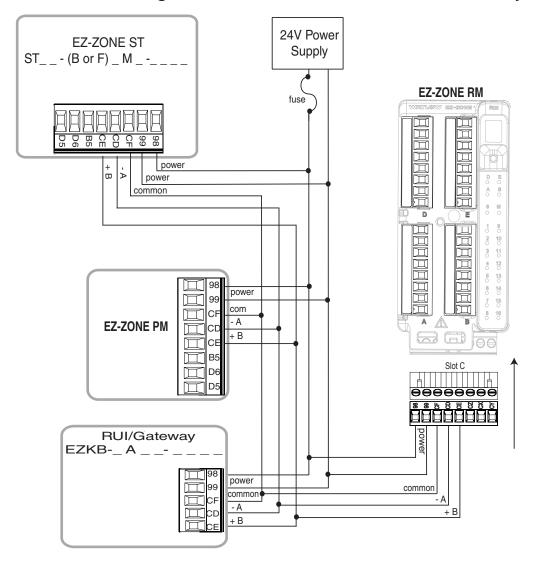
Slot B: PM [6] _ _ _ -[6] _ _ _ _ - Slot E: PM [4, 8, 9] _ _ _ -[6] _ _ _ _ _

Profibus Terminal	EIA/TIA-485 Name	Watlow Terminal Label	Function
VP (Voltage Po- tential)		VP	+5Vdc
B-Line	В	В	T+/R+
A-Line	Α	Α	T-/R-
DP-GND	common	DG	common

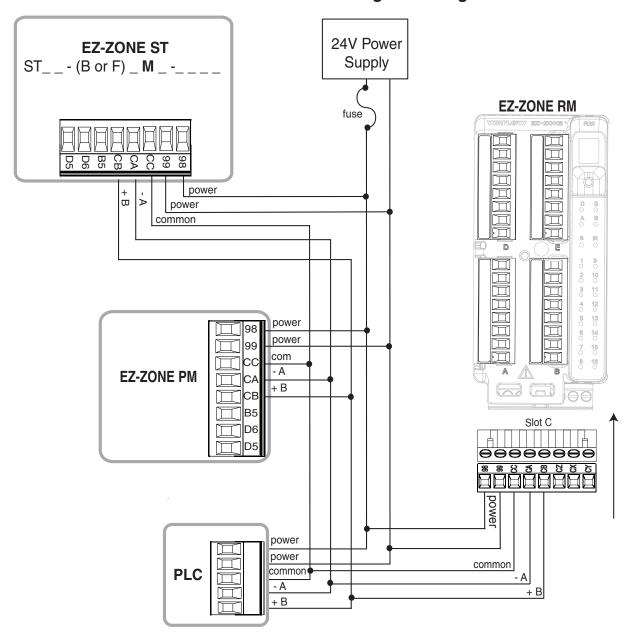
Profibus DP LED Indicators

Viewing the unit from the front and then looking on top of the controller two bi-color LEDs can be seen where only the front one is used. Definition follows:

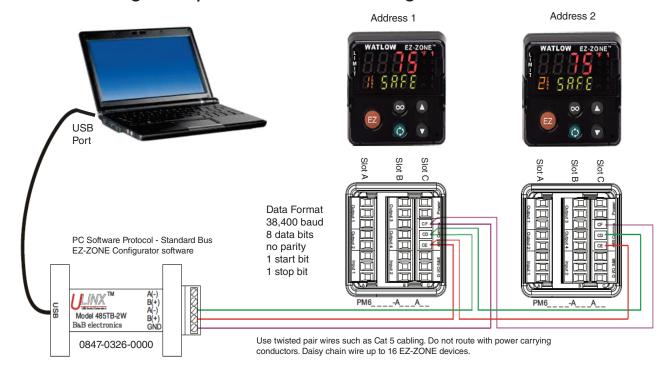
Closest to the Front


Indicator LED	Description
Red	Profibus network not detected
Red Flashing	Indicates that the Profibus card is waiting for data exchange.
Green	Data exchange mode

Wiring a Serial EIA-485 Network


Do not route network wires with power wires. Connect network wires in daisy-chain fashion when connecting multiple devices in a network. A termination resistor may be required. Place a 120 Ω resistor across T+/R+ and T-/R- of the last controller on a network.

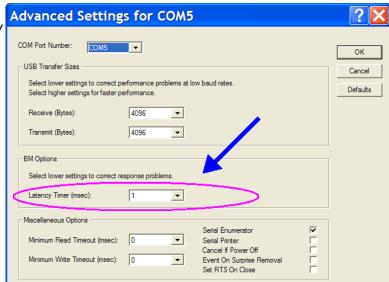
Only one protocol per port is available at a time: either Modbus RTU or Standard Bus.


A Network Using Watlow's Standard Bus and an RUI/Gateway.

A Network with all Devices Configured using Modbus RTU.

Connecting a Computer to PM Controls Using B&B 485 to USB Converter

Note:


Do not leave a USB to EIA-485 converter connected to Standard Bus without power (i.e., disconnecting the USB end from the computer while leaving the converter connected on Standard Bus). Disturbance on the Standard Bus may occur.

Note:

When connecting the USB converter to the PC it is suggested that the Latency Timer be changed from the default of 16 msec to 1 msec. Failure to make this change may cause communication loss between the PC running EZ-ZONE Configurator software and the control.

To modify Latency Timer settings follow the steps below:

- 1. Navigate to Device Manager.
- 2. Double click on Ports.
- 3. Right click on the USB serial port in use and select Properties.
- 4. Click the tab labeled Port settings and then click the Advance button.

3

Chapter 3: Keys and Displays

Upper (Left, 32nd DIN) Display:

In the Home Page, displays the process value, otherwise displays the value of the parameter in the lower display.

Zone Display:

Indicates the controller zone.

/ to 9 = zones 1 to 9

R =zone 10 E =zone 14

b =zone 11 F =zone 15

 \mathcal{L} = zone 12 \mathcal{L} = zone 16

d = zone 13

Percent Units:

Lights when the controller is displaying values as a percentage.

Channel Display:

Indicates the channel for any given EZ-ZONE module.

- Available with the PM4, 8 and 9 only.

Reset Key

Press to back up one level, or press and hold for two seconds to return to the Home Page. From the Home Page will reset the limit and clear alarms and errors if clearable.

Advances through parame-`ter prompts.

Note:

Upon power up, the upper or left display will briefly indicate the firmware revision and the lower or right display will show PM representing the model.

1/32 DIN (PM3)

1/8 DIN (PM9) Horizontal

1/8 DIN (PM8) Vertical

1/4 DIN (PM4)

Lower (Right, 32nd DIN) Display:

Indicates the limit is *SAFE* or *ALL* for an active message. It may also show the parameter whose value appears in the upper display.

EZ Key/s:

These keys can be programmed to do various tasks, such as starting a profile.

Output Activity:

Number LEDs indicate activity of outputs. A flashing light indicates output activity.

Communications Activity

Flashes when another device is communicating with this controller.

Temperature Units:

Indicates whether the temperature is displayed in Fahrenheit or Celsius.

Up and Down Keys 🔾 🔾

In the Home Page, adjusts the set point in the lower display. In other pages, changes the upper display to a higher or lower value, or changes a parameter selection.

Responding to a Displayed Message

An active message will cause the display to toggle between the normal settings and the active message in the upper display and REED in the lower display.

Your response will depend on the message and the controller settings. Some messages, such as Ramping and Tuning, indicate that a process is underway. If the message was generated by a latched alarm and the condition no longer exists or if an alarm has silencing enabled it can be silenced simply by pushing the Infinity we key. Alternatively, use the method below to view all and then clear.

Push the Advance Key to display "and in the upper display and the message source (such as RLh) in the lower display. Use the Up or Down keys to scroll through possible responses, such as Clear [Lr] or Silence 5 L, then push the Advance or Infinity key to execute the action. See the Home Page for further information on the Attention Codes.

Display	Parameter Name Description	Range	Appears If
AFFU	Attention An active message will cause the display to toggle between the normal settings and the active message in the upper display and REEn in the lower display. Your response will depend on the message and the controller settings. Some messages, such as Ramping and Tuning, indicate that a process is underway. If the message was generated by a latched alarm, the message can be cleared when the condition no longer exists. If an alarm has silencing enabled, it can be silenced. 1. Push the Advance Key (a) to display in the upper display and the message source (such as RE.h.!) in the lower display. 2. Use the Up (a) and Down (b) keys to scroll through possible responses, such as Clear (Lr or Silence 5 i.e. 3. Press the Advance Key (a) or Reset (a) button to execute the action. Alternatively, rather than scrolling through all messages simply push the Reset (a) button to generate a clear.	Alarm Low 1 to 4 Alarm Low 1 to 4 Alarm High 1 to 4 Alarm Error 1 to 4 Er. I Error Input 1 Lil Limit Low 1 Lih Limit High 1 LiE Limit Error 1 JALh Value to high to be displayed in 4 digit LED display >9999 JALL Value to low to be displayed in 4 digit LED display <-1999	An alarm or error message is active.

4

Chapter 4: Home Page

Default Home Page Parameters

Watlow's patented user-defined menu system improves operational efficiency. The user-defined Home Page provides you with a shortcut to monitor or change the parameter values that you use most often. The default Home Page is shown on the following page. When a parameter normally located in the Setup Page or Operations Page is placed in the Home Page, it is accessible through both. If you change a parameter in the Home Page, it is automatically changed in its original page. If you change a parameter in its original page it is automatically changed in the Home Page.

Use the Advance Key \odot to step through the other parameters. When not in pairs, the parameter prompt will appear in the lower display, and the parameter value will appear in the upper display. You can use the Up \odot and Down \odot keys to change the value of writable parameters, just as you would in any other menu.

Note:

If a writable value is placed on the upper display and is paired with another read only parameter on the lower display, the arrow keys affect the setting of the upper display. If two writable parameters are paired, the arrow keys affect the lower display.

- The Attention REED parameter appears only if there is an active message. An example of an active message could be a Input Error Error.
- If a sensor failure has occurred, dashes ---- will be displayed in the upper display and the Manual Power (read-write) is in the lower display.

Navigating the EZ-ZONE PM Limit Controller PM6 Shown, Applies to All Models

Home Page from anywhere: Press the Reset • key for two seconds to return to the Home Page.

Operations Page from Home Page: Press both the Up ◆ and Down ♦ keys for three seconds.

Setup Page from Home Page: Press both the Up ◆ and Down ◆ keys for six seconds.

Note:

Keys must be held continuously until 5EE is displayed in green. If keys are released when $\Box PEr$ is displayed, press the infinity key or reset key to exit and repeat until 5EE is displayed.

Factory Page from Home Page: Press both the Advance (§) and Reset (©) keys for six seconds...

Changing the Set Point

From the default Home Page the Limit Set Points, high and low, can be changed. If high and low limits have been configured push the Advance (a) key one time and the Low Limit Set Point L.5.1 prompt will appear in the lower display while the current set point will be displayed above. Pushing the Up (a) or Down (b) keys will change the set point. Once done, simply push the Advance (a) key to display the High Limit Set Point L.5.1 will appear below and the current High Limit Set Point will be displayed above. Again, to change simply push the Up (a) and Down (a) arrow keys.

Modifying the Home Page

Follow the steps below to modify the Home Page:

- 1. Push and hold the Advance key and the Infinity key for approximately six seconds. Upon entering the Factory Page the first menu will be the Custom Menu [45].
- 2. Push the Advance (a) key where the lower display will show [15] and the upper display will show [... 5].
- 3. Push the Advance button where the prompt for the Custom [15] will be displayed on top and Parameter PRr in the bottom.

There are twenty positions available that can be customized.

4. Pushing the Up ◆ or Down ◆ arrow keys will allow for a customized selection to be made (see list of available parameters below).

Custom Menu Parameter Options		
Description	Prompt *	
	All Models	
None	Blank	
Analog Input Value	R in I	
Cal In Offset	ιER I	
Display Units	E_F I	
Load Parameter Set	USr.1 USr.2	
Low Set Point	ALOI ALOZ ALOJ ALOY	
High Set Point	Rhil Rhi2 Rhi3 Rhi4	
Hysteresis	RHYI RHYZ RHY3 RHYY	
Low Limit Set Point	L L.5 1	
High Limit Set Point	LAST	
Hysteresis	L.HY I	
Limit Status	L.SE I	

^{*} The numerical digit shown in the prompts above (last digit), represents the parameter instance and can be greater than one.

Modifying the Display Pairs

The Home Page, being a customized list of as many as 20 parameters, can be configured in pairs of up to 10 via the Display Pairs dPr5 prompt found in the Global Menu GLbL (Setup Page). The listing in the table that follows represents the Limit default Home page. It is important to note that some of the prompts shown may not appear simply because the feature is not being used or is turned off. As an example, the prompt shown in position 3 (Limit Low Set

Point, <u>LL.5</u>) will not appear unless the Limit Sides is set for low or both found on the Setup page under the Limit Menu.

Home Page Default Parameters			
Custom Menu Number	Home Page Dis- play (defaults)	Parameter Name	Custom Menu Display (defaults)
1 (Upper or left display)	Numerical value	Active Process Value	Pro Firmware revision 11.0 and above # In 1 Firmware below revision 11.0
2 (Lower or right display)	SAFE or FR .L	Limit Status	L.5E
3	Numerical value	Low Limit Set Point	LL.5 1
4	Numerical value	High Limit Set Point	Lh5 I
5 to 20	(skipped)		nonE

Note:

When the Limit is in a default state (as shipped from factory), the display will flash where the top display will show the Process Value and the bottom display will flash REED and EREL.

As stated above, the user can define ten pairs of prompts to appear on the display every time the Advance (a) key is pushed. In a default state, the Display Pairs dPr5 prompt (Setup Page under the Global Menu) is equal to one with the first pair displayed as is defined in the Home Page table above. If the Display Pairs prompt were to be changed to two, pushing the Advance (a) key one time would cause the display to show the Low Limit Set Point on the top and the High Limit Set Point on the bottom reflecting position 3 and 4 respectively.

Note

Both of these parameters are writable and being paired in this manner only the High Limit Set Point can be changed. Pairing two writable prompts will only allow for the bottom one to be changed. On the other hand, if a writable value is placed on the upper display and is paired with another read only parameter on the lower display, the arrow keys affect the setting of the upper display.

The display can be configured to scroll through the Display Pairs by going to the Setup Page under the Global Menu and changing the Display Time d.E., prompt to something greater than 0. If set to 2, the display will scroll through the pairs every 2 seconds starting with Custom Menu Pair 1 and 2, 3 and 4, etc...

Conventions Used in the Menu Pages

To better understand the menu pages that follow review the naming conventions used. When encountered throughout this document, the word "default" implies as shipped from the factory.

Conventions Used (cont.)

Each page (Operations, Setup, Profile and Factory) and their associated menus have identical headers defined below:

Header Name	Definition	
Display	Visually displayed information from the control.	
Parameter Name	Describes the function of the given parameter.	
Range	Defines options available for this prompt, i.e., min/max values (numerical), yes/no, etc (further explanation below).	
Default	Values as delivered from the factory.	
Modbus Relative Address	Identifies unique parameters using either the Modbus RTU or Modbus TCP protocols (further explanation below).	
CIP (Common Industri- al Protocol)	Identifies unique parameters using either the DeviceNet or EtherNet/IP protocol (further explanation below).	
Profibus Index	Identifies unique parameters using Profibus DP protocol (further explanation below).	
Parameter ID	Identifies unique parameters used with other software such as, LabVIEW.	
Data Type R/W	uint = Unsigned 16 bit integer dint = Signed 32-bit, long string = ASCII (8 bits per character) float = IEEE 754 32-bit RWES = Readable Writable EEPROM (saved) User Set (saved)	

Display

Visual information from the control is displayed to the observer using a fairly standard 7 segment display. Due to the use of this technology, several characters displayed need some interpretation, see the list below:

<i>l</i> = 1	7 = 7	c, [= c	ι= i	_ = O	ப, ∐= u
2 = 2	<u>8</u> = 8	<u>d</u> = d	ا = <u>ل</u>	<i>P</i> = P	u, ∐= V
∃ = 3	9 = 9	<i>E</i> = E	H= K	9 = q	៤៤= W
4 = 4	<u> </u>	F = F	L = L	_ = r	5 = y
5 = 5	A = A	9 = g	<u>г</u> ¬= М	5 = S	2 = Z
5 = 6	 b = b	<i>h</i> = h	n= n	<u></u> = t	

Range

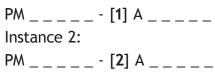
Within this column notice that on occasion there will be numbers found within parenthesis. This number represents the enumerated value for that particular selection. Range selections can be made simply by writing the enumerated value of choice using any of the available communications protocols. As an example, turn to the Setup Page and look at the Analog Input R_{\perp} menu and then the Sensor Type SE_{R} prompt. To turn the sensor off using Modbus simply write the value of 62 (off) to register 368 and send that value to the control.

Communication Protocols

When using a communications protocol in conjunction with the EZ-ZONE PM there are two possible ports (instances) used. Port 1 or instance 1 is always dedicated to Standard Bus communications. This same instance can also be used for Modbus RTU if ordered. Depending on the

controller part number, port 2 (instance 2) can be used with Modbus, CIP and Profibus. For further information read through the remainder of this section.

Modbus Introduction to the Modbus Protocol


Gould Modicon, now called AEG Schneider, first created the protocol referred to as "Modbus RTU" used in process control systems. Modbus provides the advantage of being extremely reliable in exchanging information, a highly desirable feature for industrial data communications. This protocol works on the principle of packet exchanges. The packet contains the address of the controller to receive the information, a command field that says what is to be done with the information, and several fields of data. Each PM parameter has a unique Modbus address and they can be found in the following Operations, Setup and Factory Pages.

Note:

With the release of firmware revision 7.00 and above new functions where introduced into this product line. With the introduction of these new functions there was a reorganization of Modbus registers. Notice in the column identified as Modbus the reference to Map 1 and Map 2 registers for each of the various parameters. If the new functions of this product line are not to be used, Map 1 (legacy PM controls) Modbus registers will be sufficient. The Modbus register mapping PTRP can be changed in the Setup Page under the EppT Menu. This setting will apply across the control. We recommend using Map 2 for all new applications. Use Map 1 only if it is desired to maintain backwards compatibility.

It should also be noted that some of the cells in the Modbus column contain wording pertaining to an offset. Several parameters in the control contain more than one instance, such as, alarms (4). The Modbus register shown always represents instance one. Take for an example the Silence Alarm parameter found in the Setup Page under the Alarm Menu. Instance one of Map 1 is shown as address 1490 and +50 is identified as the offset to the next instance. If there was a desire to read or write to instance 3, simply add 100 to 1490 to find its address, in this case, the instance 3 address for Silence Alarm is 1590.

The Modbus communications instance can be either 1 or 2 depending on the part number. Instance 1:

To learn more about the Modbus protocol point your browser to http://www.modbus.org.

Common Industrial Protocol (CIP) Introduction to CIP

Both DeviceNet and EtherNet/IP use open object based programming tools and use the same addressing scheme. In the following menu pages notice the column header identified as CIP. There you will find the Class, Instance and Attribute in hexadecimal, (decimal in parenthesis) which makes up the addressing for both protocols.

The CIP communications instance will always be instance 2.

Data Types Used with CIP

int	= Signed 16-bit integer
uint	= Signed 16-bit integer
dint	= Signed 32-bits, long
real	= Float, IEEE 754 32-bit
string	= ASCII, 8 bits per character
sint	= Signed 8 bits , byte

To learn more about the DeviceNet and EtherNet/IP protocol point your browser to http://www.odva.org.

Profibus DP

To accommodate for Profibus DP addressing the following menus contain a column identified as Profibus Index. Data types used in conjunction with Profibus DP can be found in the table below.

The Profibus communications instance will always be instance 2.

real	= Float, IEEE 754 32-bit
int	= Signed 16-bit integer
byte	= 8-bits

To learn more about the Profibus DP protocol point your browser to http://www.profibus.org

5

Chapter 5: Operations Page

PM Operation Page Parameters

To navigate to the Operations Page, follow the steps below:

- 1. From the Home Page, press both the Up \odot and Down \odot keys for three seconds. P will appear in the upper display and P P will appear in the lower display.
- 2. Press the Up or Down key to view available menus.
- 3. Press the Advance Key

 to enter the menu of choice.
- 4. If a sub-menu exists (more than one instance), press the Up ◆ or Down ♦ key to select and then press the Advance Key ⑤ to enter.
- 5. Press the Up or Down key to move through available menu prompts.
- 6. Press the Infinity Key to move backwards through the levels: parameter to sub-menu, sub-menu to menu, menu to Home Page.

7. Press and hold the Infinity Key of for two seconds to return to the Home Page.

On the following pages, top level menus are identified with a yellow background color.

Note:

Some of these menus and parameters may not appear, depending on the controller's options. See model number information in the Appendix for more information. If there is only one instance of a menu, no sub-menus will appear.

Note:

Some of the listed parameters may not be visible. Parameter visibility is dependent upon controller part number.

```
PEr Analog Input Menu

Analog Input (1 to 2)

Analog Input (1 to 2)

Analog Input Value

Er Input Error

ER Calibration Offset

PEr Digital Input/Output Menu

Digital Input/Output (5 to 6)

Digital State

Input State

E 5 Event Status
```

```
ו ורח
□PEr Limit Menu
 L 177 Limit
  LL.5 Low Limit Set Point
  Lh5 High Limit Set Point
        Clear Limit
  LEr
         Limit Status
  L.SE
A! LJ
□PEr Alarm Menu
 ALTT Alarm (1 to 4)
  RL D Low Set Point
  Rh High Set Point
  REL Clear Alarm
  85 is Silence Alarm
  R51 Alarm State
```

		Opera	tions Paç	je				
Display	Parameter Name Description	Range	Default	Modbus Relative Ad- dress	CIP Class Instance Attribute hex (dec)	Pro- fibus Index	Pa- rame- ter ID	Data Type and Ac- cess **
Analog	Input Menu							
A in	Analog Input Analog Input Value View the process value. Note: Ensure that the Input Error (below) indicates no error (61) when reading this value using a field bus protocol. If an error exists, the last known value prior to the error occurring will be returned.	-1,999.000 to 9,999.000°F or units -1,128.000 to 5,537.000°C		Instance 1 Map 1 Map 2 360 360	0x68 (104) 1	0	4001	float R
i.Er	Analog Input Input Error View the cause of the most recent er- ror. If the ALL n message is Error, this parameter will display the cause of the input error.	PEn Open (61) DPEn Open (65) Shrk Shorted (127) EPT Measurement Error (140) EERL Bad Calibration Data (139) ErRb Ambient Error (9) Erkd RTD Error (141) FRIL Fail (32) M5rc Not Sourced (246)		Instance 1 Map 1 Map 2 362 362	0x68 (104) 1 2	1	4002	uint R
i.CA	Analog Input Calibration Offset Offset the input reading to compensate for lead wire resistance or other factors that cause the input reading to vary from the actual process value. Id, W: Write, E: EEPRO	-1,999.000 to 9,999.000°F or units -1,110.555 to 5,555.000°C	0.0	Instance 1 Map 1 Map 2 382 382	0x68 (104) 1 0xC (12)	2	4012	float RWES

		Opera	tions Pag	je				
Display	Parameter Name Description	Range	Default	Modbus Relative Ad- dress	CIP Class Instance Attribute hex (dec)	Pro- fibus Index	Pa- rame- ter ID	Data Type and Ac- cess **
d 10 oPEr Digital I	nput/Output Menu							
d a.5 do.S	Digital Output (5 to 6) Output State View the state of this output.	oFF Off (62)		Instance 5 Map 1 Map 2 1012 1132 Offset to next instance equals +30	0x6A (106) 5 to 6 7	46	6007	uint R
d .5 di.S	Digital Input (5 to 6) Input State View this event input state.	aFF Off (62) an On (63)		Instance 5 Map 1 Map 2 1020 1140 Offset to next instance equals +30	0x6A (106) 5 to 6 0x0B (11)		6011	uint R
E 1.5 Ei.S	Digital Input (5 to 6) Event Status View this event input state.	Ret Inactive (41) Ret Active (5)		Instance 5 Map 1 Map 2 1408 1648 Offset to next instance equals +20	0x6E (110) 5 to 6 5	140	10005	uint R
No Dis- play	EZ-Key/s (1 to 2) Event Status View this event input state.	Reb Inactive (41)		Instance 1 Map 1 Map 2 1328 1568 Instance 2 Map 1 Map 2 1348 1588	0x6E (110) 3 to 4 5	140	10005	uint R
L IPT oPEr								
Limit M								
L L.5 LL.S	Limit Low Limit Set Point Set the low process value that will trigger the limit.	-1,999.000 to 9,999.000°F or units -1,128.000 to 5,537.000°C	0.0°F or units -18.0°C	Map 1 Map 2 684 724	0x70 (112) 1 3	38	12003	float RWES
L h.5 Lh.S	Limit High Limit Set Point Set the high process value that will trigger the limit.	-1,999.000 to 9,999.000°F or units -1,128.000 to 5,537.000°C	0.0°F or units -18.0°C	Instance 1 Map 1 Map 2 686 726	0x70 (112) 1 4	39	12004	float RWES
** R: Rea	d, W: Write, E: EEPRC	M, S: User Set						

Operations Page									
Display	Parameter Name Description	Range	Default	Modbus Relative Ad- dress	CIP Class Instance Attribute hex (dec)	Pro- fibus Index	Pa- rame- ter ID	Data Type and Ac- cess **	
L[r L[r	Limit (1) Clear Limit Clear limit once limit condition is cleared.	Clear (0) No Change (255)		Instance 1 Map 1 Map 2 680 720	0x70 (112) 1 1		12014	uint W	
L.5 Ł L.5 Ł	Limit (1) Limit Status Reflects whether or not the limit is in a safe or failed mode	FR L Fail (32) 5RFE Safe (1667)		Instance 1 Map 1 Map 2 744	0x70 (112) 1 0x0D (13)		12013	uint R	
No Dis- play	Limit Limit State Clear limit once limit condition is cleared.	Off (62) None (61) Limit High (51) Limit Low (52) Error (225)		Instance 1 Map 1 Map 2 690 730	0x70 (112) 1 6		12006	uint R	
ALTT PEr Alarm Menu									
A.Lo	Alarm (1 to 4) Low Set Point If Type (Setup Page, Alarm Menu) is set to: Process - set the process value that will trigger a low alarm.	-1,999.000 to 9,999.000°F or units -1,128.000 to 5,537.000°C	32.0°F or units 0.0°C	Instance 1 Map 1 Map 2 1482 1882 Offset to next instance (Map 1) equals +50 Offset to next instance (Map 2) equals +60	0x6D (109) 1 to 4 2	18	9002	float RWES	
A.hi	Alarm (1 to 4) High Set Point If Type (Setup Page, Alarm Menu) is set to: Process - set the process value that will trigger a high alarm. Id, W: Write, E: EEPRO	-1,999.000 to 9,999.000°F or units -1,128.000 to 5,537.000°C	300.0 °F or units 150.0 °C	Instance 1 Map 1 Map 2 1480 1880 Offset to next instance (Map 1) equals +50 Offset to next instance (Map 2) equals +60	0x6D (109) 1 to 4	19	9001	float RWES	

		Opera	tions Pag	je				
Display	Parameter Name Description	Range	Default	Modbus Relative Ad- dress	CIP Class Instance Attribute hex (dec)	Pro- fibus Index	Pa- rame- ter ID	Data Type and Ac- cess **
A.CLr	Alarm (1 to 4) Clear Alarm Write to this register to clear an alarm	ELr Clear (1003) "Enr Ignore (204)		Instance 1 Map 1 Map 2 1504 1904 Offset to next instance (Map1 1 equals +50, Map 2 equals +60)	0x6D (109) 1 to 4 0x0D (13)		9026	uint W
A.Sir	Alarm (1 to 4) Silence Alarm Write to this register to silence an alarm	5 ,L Silence (1010)		Instance 1 Map 1 Map 2 1506 1906 Offset to next instance (Map1 1 equals +50, Map 2 equals +60)	0x6D (109) 1 to 4 0x0E (14)		9027	uint W
#5 <i>E</i> A.St	Alarm (1 to 4) State Current state of alarm	Startup (88) None (61) Blocked (12) Alarm low (8) Alarm high (7) Error (28)		Instance 1 Map 1 Map 2 1496 1896 Offset to next instance (Map1 1 equals +50, Map 2 equals +60)	0x6D (109) 1 to 4 9		9009	uint R
No Dis- play	Alarm (1 to 4) Alarm Clearable Indicates if alarm can be cleared.	No (59) Yes (106)		Instance 1 Map 1 Map 2 1502 1902 Offset to next instance (Map1 1 equals +50, Map 2 equals +60)	0x6D (109) 1 to 4 0xC (12)		9012	uint R
No Display	Alarm (1 to 4) Alarm Silenced Indicates if alarm is silenced.	No (59) Yes (106)		Instance 1 Map 1 Map 2 1500 1900 Offset to next instance (Map1 1 equals +50, Map 2 equals +60)	0x6D (109) 1 to 4 0x0B (11)		9011	uint R

Display Parameter Name Description Range Default Profibus Relative Address Relative Address Instance Attribute hex (dec) No Display Alarm (1 to 4) Alarm Latched Indicates if alarm is latched. No (59) Yes (106) Offset to next instance (Map 1 1 equals +50, Map 2 equals		Operations Page									
play Alarm Latched Indicates if alarm is latched. Yes (106) Map 1 Map 2 (109) 1498 1898 Offset to next instance (Map1 1 equals +50, Map 2 equals	Display		Range	Default	Relative Ad-	Class Instance Attribute	fibus	rame- ter	Data Type and Ac- cess **		
+60)		Alarm Latched Indicates if alarm is	, , ,		Map 1 Map 2 1498 1898 Offset to next instance (Map1 1 equals +50,	(109) 1 to 4		9010	uint R		

6 Chapter 6: Setup Page

Navigating the Setup Page

To navigate to the Setup Page follow the steps below:

1. From the Home Page, press and hold both the Up; and Down • keys for six seconds. # r will appear in the upper display and 5EE will appear in the lower display. If the up and down arrow keys are released where oPEr appears in the lower display, simply press and hold those same keys for an additional 3 seconds.

Note: (for firmware release 13 and below)

If keys are released when $\Box PE_r$ is displayed, press the Infinity Key \odot or reset key to exit and repeat until $5E_L$ is displayed.

- 2. Press the Up ξ or Down \odot key to view available menus.
- 3. Press the Advance Key () to enter the menu of choice.
- 4. If a sub-menu exists (more than one instance), press the Up ◆ or Down ♦ key to select and then press the Advance Key ⑤ to enter.
- 5. Press the Up \odot or Down \odot key to move through available menu prompts.
- 6. Press the Infinity Key © to move backwards through the levels: parameter to sub-menu, sub-menu to menu, menu to Home Page.
- 7. Press and hold the Infinity Key of for two seconds to return to the Home Page.

On the following pages, top level menus are identified with a yellow background color.

Note:

Some of these menus and parameters may not appear, depending on the controller's options. See model number information in the Appendix for more information. If there is only one instance of a menu, no sub-menus will appear.

Note:

Some of the listed parameters may not be visible. Parameter visibility is dependent upon controller part number.

A,	r.L o	Range Low	ı,E A	Calibration Offset *
5EE Analog Input Menu	r.h i	Range High	A in	Analog Input Value *
1	P.E E	Process Error En-	.Er	Input Error *
A . Analog Input (1 to 2)		able	d io	
5En Sensor Type	P.E.L	Process Error Low	5EŁ Di	gital Input/Output
		Value		enu .
	ЬF	Thermistor Curve		
rtL RTD Leads			5	
∐ո ւե Units	Г.Г	Resistance Range	d io	Digital Input/Output (5
	FiL	Filter	t	0 6)
	ı.E.r	Input Error Latching	d ir	Direction
5.h , Scale High				
•	d E C	Display Precision	Fn	Function

^{*} These parameters/prompts are available with firmware revisions 11.0 and above.

Fi	Output Function In-	ALTT	כסרח
	stance	5EL Alarm Menu	5EL Communications Menu
LEu	Active Level	 	
Fn	Action Function	FLP7 Alarm (1 to 4)	[[] Communications (1
Fι	Function Instance	REY Type	to 2)
ב ירח		5r.A Alarm Source	PEaL Protocol
SEE Lir	mit Menu	J.F. Alarm Source In-	R.d5 Standard Bus Ad-
L.5 d	Sides	stance	dress
L.h Y	Hysteresis	R뉴딩 Hysteresis	Rd. P. 7 Modbus Address
	Maximum Set	RL9 Logic	<i>⊾⊓⊔d</i> Baud Rate
37.27	Point	R5d Sides	PAr Parity
5 <i>P.</i> L L	Minimum Set	RL D Low Set Point *	ПЛЫ Modbus Word Order
	Point	Rh , High Set Point *	וף Address Mode
L h.5	High Limit Set Point	RLA Latching	P.F IP Fixed Address
	*	RbL Blocking	Part 1
L L.5	Low Limit Set Point	R5 Silencing	P.F.2 IP Fixed Address
	*	Rd5P Display	Part 2
5F n.A	Source Function	RdL Delay Time	Part 2
	A*	REL Clear Alarm *	Part 3
5 .A	Source Instance	R5 ir Silence Alarm *	PF4 IP Fixed Address، Part 4
	A*	R5Ł Alarm State *	P.F.5 IP Fixed Address
L.Er	Clear Limit *		Part 5
L.5 E	Limit Status *	FUn	P.F. IP Fixed Address
oEPE		5EŁ Variable Menu	Part 6
5EL Out	put Menu	1	P5 IP Fixed Subnet
1		Fun Function Key (1 to 2)	Part 1
oEPE	Output (1 to 4)	LEu Active Level	P52 IP Fixed Subnet
Fn	Function	Fn Action Function	Part 2
		F , Function Instance	Post 2
Fı	Output Function In- stance	9L6L	Part 3
_ L O L	Output Process 3	5EL Global Menu	P54 IP Fixed Subnet. Part 4
o.t Y	Type	9LbL Global	1755 IP Fixed Subnet
u.c.s Fn	Function	[_F Display Units	Part 5
F ,	Output Function In-	RELF AC Line Frequency	P56 IP Fixed Subnet
ГІ	stance	E.L.E.d. Communications	Part 6
5.L o	Scale Low	LED Action	₁₽᠑ / IP Fixed Subnet
5.h i	Scale High	<i>∂anE</i> Zone	Part 1
r.L o	Range Low	[hAn Channel	P92 IP Fixed Subnet
r.h i	Range High	d.Pr.5 Display Pairs	Part 2
a.E.R	Calibration Offset	d.E . Display Time	IP Fixed Subnet
U.L.II	Catibiation Offset	U5r.5 Save Settings As	Part 3
		U5r.r Restore Settings	ا IP Fixed Subnet Part 4
		From	P95 IP Fixed Subnet
			Part 5

- PGE IP Fixed Subnet Part 6
- ГЛЬ.Е Modbus TCP Enable
- E .P.E EtherNet/IP Enable
- Ronb CIP Implicit Assembly Output Member Quantity
- R Lnb CIP Implicit Assembly Input Member Quantity
- Rd.d DeviceNet™ Node Address
- Baud Rate Device-Net™
- FEE DeviceNet™ Quick Connect Enable
- P.Add Profibus Address
- RLoE Profibus Address Lock
- **5***ERE* Profibus Status
- [_F Display Units
- PTRP Data Map
- nu.5 Non-volatile Save

	Setup Page								
Display	Parameter Name Description	Range	Default	Modbus Relative Ad- dress	CIP - Class Instance Attribute hex (dec)	Pro- fibus Index	Param- eter ID	Data Type and Access **	
F 1 5EL Analog	Input Menu								
SEn SEn	Analog Input Sensor Type Set the analog sensor type to match the device wired to this input. Note: There is no open sensor protection for process inputs.	FF Off (62) E Thermocouple (95) P ω Millivolts (56) ω L E Volts dc (104) P Milliamps dc (112) E IH RTD 100 Ω (113) F LOH RTD 1,000 Ω (114) P ω E Potentiometer 1 kΩ (155) E h E F Thermistor (229)	Thermo- couple or Thermis- tor	Instance 1 Map 1 Map 2 368 368	0x68 (104) 1 5	3	4005	uint RWES	
L in	Analog Input TC Linearization Set the linearization to match the ther- mocouple wired to this input.	Ь B (11) H K (48) E C (15) n N (58) d D (23) r R (80) E E (26) 5 S (84) F F (30) L T (93) J J (46)	J	Instance 1 Map 1 Map 2 370 370	0x68 (104) 1 6	4	4006	uint RWES	
r Ł.L rt.L	Analog Input RTD Leads Set to match the number of leads on the RTD wired to this input.	2 2 (1) 3 3 (2)	2	Instance 1 Map 1 Map 2 372 372	0x68 (104) 1 7		4007	uint RWES	
Unit Unit	Analog Input Units Set the type of units the sensor will measure.	REP Absolute Temperature (1540) Ch Relative Humidity (1538) Pro Process (75) Plur Power (73) re available in these me	Process	Instance 1 Map 1 Map 2 442	0x68 (104) 1 0x2A (42)	5	4042	uint RWES	

^{*} These parameters/prompts are available in these menus with firmware revisions 11.0 and above. ** R: Read, W: Write, E: EEPROM, S: User Set

		Set	tup Page					
Display	Parameter Name Description	Range	Default	Modbus Relative Ad- dress	CIP - Class Instance Attribute hex (dec)		Param- eter ID	Data Type and Access **
5.L a S.Lo	Analog Input Scale Low Set the low scale for process inputs. This value, in millivolts, volts or milliamps, will correspond to the Range Low output of this function block.	-100.00 to 1,000.00	0.0	Instance 1 Map 1 Map 2 388 388	0x68 (104) 1 0xF (15)	6	4015	float RWES
5.h , S.hi	Analog Input Scale High Set the high scale for process inputs. This value, in millivolts, volts or milliamperes, will correspond to the Range High output of this function block.	-100.00 to 1,000.00	20.0	Instance 1 Map 1 Map 2 390 390	0x68 (104) 1 0x10 (16)	7	4016	float RWES
r.Lo	Analog Input Range Low Set the low range for this function block's output.	-1,999.000 to 9,999.000	0.0	Instance 1 Map 1 Map 2 392 392	0x68 (104) 1 0x11 (17)	8	4017	float RWES
r.hi	Analog Input Range High Set the high range for this function block's output.	-1,999.000 to 9,999.000	9,999	Instance 1 Map 1 Map 2 394 394	0x68 (104) 1 0x12 (18)	9	4018	float RWES
P.E E P.EE	Analog Input Process Error En- able Turn the Process Error Low feature on or off.	oFF Off (62) Lobd Low (53)	Off	Instance 1 Map 1 Map 2 418 418	0x68 (104) 1 0x1E (30)	10	4030	uint RWES
P.E.L P.EL	Analog Input Process Error Low Value If the process value drops below this value, it will trigger an input error.	-100.00 to 1,000.00	0.0	Instance 1 Map 1 Map 2 420 420	0x68 (104) 1 0x1F (31)	11	4031	float RWES
				_				

^{*} These parameters/prompts are available in these menus with firmware revisions 11.0 and above. ** R: Read, W: Write, E: EEPROM, S: User Set

		Set	up Page					
Display	Parameter Name Description	Range	Default		CIP - Class Instance Attribute hex (dec)		Param- eter ID	Data Type and Access **
Ł.C t.C	Analog Input Thermistor Curve Select a curve to apply to the thermistor input.	# Curve A (1451) b Curve B (1452) C Curve C (1453) CUSE Custom (180)	Curve A	Instance 1 Map 1 Map 2 434 434	0x68 (104) 1 0x26 (38)		4038	uint RWES
r.r	Analog Input Resistance Range Set the maximum resistance of the thermistor input.	5 5K (1448) 10 10K (1360) 20 20K (1361) 40 40K (1449)	40K	Instance 1 Map 1 Map 2 432 432	0x68 (104) 1 0x25 (37)		4037	uint RWES
F 1L FiL	Analog Input Filter Filtering smooths out the process sig- nal to both the dis- play and the input. Increase the time to increase filtering.	0.0 to 60.0 seconds	0.5	Instance 1 Map 1 Map 2 386 386	0x68 (104) 1 0xE (14)	12	4014	float RWES
	Note: Filter does not apply to the Limit sensor but does apply to all other functions.							
ιΕr i.Er	Analog Input Input Error Latching Turn input error latching on or off. If latching is on, errors must be manually cleared.	aFF Off (62) an On (63)	Off	Instance 1 Map 1 Map 2 414 414	0x68 (104) 1 0x1C (28)		4028	uint RWES
dEC dEC	Analog Input Display Precision Set the precision of the displayed value.	U Whole (105) UU Tenths (94) UUU Hundredths (40) UUU Thousandths (96)	Whole	Instance 1 Map 1 Map 2 398 398	0x68 (104) 1 0x14 (20)		4020	uint RWES
ı.E.R i.CA	Analog Input Calibration Offset * Offset the input reading to compensate for lead wire resistance or other factors that cause the input reading to vary from the actual process value.	-1,999.000 to 9,999.000°F or units -1,110.555 to 5,555.000°C	0.0	Instance 1 Map 1 Map 2 382 382	0x68 (104) 1 0xC (12)	2	4012	float RWES

^{*} These parameters/prompts are available in these menus with firmware revisions 11.0 and above. ** R: Read, W: Write, E: EEPROM, S: User Set

	Setup Page									
Display	Parameter Name Description	Range	Default	Modbus Relative Ad- dress	CIP - Class Instance Attribute hex (dec)		Param- eter ID	Data Type and Access **		
Ain	Analog Input Analog Input Value * View the process value. Note: Ensure that the Error Status (below) indicates no error (61) when reading this value using a field bus protocol. If an error exists, the last known value prior to the error occurring will be returned.	-1,999.000 to 9,999.000°F or units -1,128.000 to 5,537.000°C		Instance 1 Map 1 Map 2 360 360	0x68 (104) 1 1	0	4001	float R		
i.Er	Analog Input Input Error * View the cause of the most recent er- ror.	PEn Open (61) PEn Open (65) Shok Shorted (127) End Measurement Error (140) ELAL Bad Calibration Data (139) End Ambient Error (9) End RTD Error (141) FROL Fail (32)		Instance 1 Map 1 Map 2 362 442	0x68 (104) 1 2	1	4002	uint R		
d 10 5EE Digital I	nput/Output Menu									
d ir dir	Digital Input/Output (5 to 6) Direction Set this function to operate as an input or output.	obpb Output (68) In Input Voltage (193) In Input Dry Contact (44)	Output	Instance 5 Map 1 Map 2 1000 1120 Offset to next instance (Map 1 & Map 2) equals +30	0x6A (106) 5 to 6 1	82	6001	uint RWES		
* These p	parameters/prompts a d, W: Write, E: EEPRC	re available in these m M, S: User Set	enus with f	firmware revisi	ons 11.0 a	nd abov	e.			

		Set	up Page					
Display	Parameter Name Description	Range	Default	Modbus Relative Ad- dress	CIP - Class Instance Attribute hex (dec)		Param- eter ID	Data Type and Access **
Fn Fn	Digital Output (5 to 6) Function Select what function will drive this output.	□FF Off (62) RLP7 Alarm (6)	Off	Instance 5 Map 1 Map 2 1008 1128 Offset to next instance (Map 1 & Map 2) equals +30	5 to 6	83	6005	uint RWES
F , Fi	Digital Output (5 to 6) Output Function Instance Set the instance of the function selected above. Note: Modbus Map 1 has instances 5 through 8 only	1 to 4	1	Instance 5 Map 1 Map 2 1010 1130 Offset to next instance (Map 1 & Map 2) equals +30		84	6006	uint RWES
L E u LEv	Digital Input (5 to 6) Active Level Select which action will be interpreted as a true state.	h ւցհ High (37) L օսմ Low (53)	High	Instance 5 Map 1 Map 2 1320 1560 Offset to next instance (Map 1 & Map 2) equals +20	0x6E (110) 5 to 6 1	137	10001	uint RW
F n Fn	Digital Input (5 to 6) Action Function Select the function that will be triggered by a true state for Digital Inputs 5 to 6.	RonE None (61) F.AL Force Alarm to occur, level trig- gered (218) Rof Control Loops Off and Alarms to Non-alarm State, level triggered (220) L Silence Alarms, edge triggered (108) RLPT Alarm Reset, edge triggered (6) PLof Keypad Lock- out, level triggered (217) uSr.r User Set Re- store, edge trig- gered (227)	None	Instance 5 Map 1 Map 2 1324 1564 Offset to next instance (Map 1 & Map 2) equals +20		138	10003	uint RWES

^{*} These parameters/prompts are available in these menus with firmware revisions 11.0 and above. ** R: Read, W: Write, E: EEPROM, S: User Set

		Set	up Page					
Display	Parameter Name Description	Range	Default	Modbus Relative Ad- dress	CIP - Class Instance Attribute hex (dec)		Param- eter ID	Data Type and Access **
F , Fi	Digital Input (5 to 6) Function Instance Select which Digital Input will be triggered by a true state.	0 to 40	0	Instance 5 Map 1 Map 2 1326 1566 Offset to next instance (Map 1 & Map 2) equals +20	0x6E (110) 5 to 6 4	139	10004	uint RWES
L IPT SEL Limit M	enu							
L.5 d L.Sd	Limit Sides Select which side or sides of the process value will be monitored.	Ե օ ೬ Ի Both (13) Իսցի High (37) Լ օնվ Low (53)	Both	Instance 1 Map 1 Map 2 688 728	0x70 (112) 1 5	40	12005	uint RWES
L.h ⅓ L.hy	Limit Hysteresis Set the hysteresis for the limit function. This determines how far into the safe range the process value must move before the limit can be cleared.	0.001 to 9,999.000°F or units 0.001 to 5,555.000°C	3.0°F or units 2.0°C	Instance 1 Map 1 Map 2 682 722	0x70 (112) 1 2	41	12002	float RWES
5P.L h SP.Lh	Limit Maximum Set Point Set the high end of the limit set point range.	-1,999.000 to 9,999.000	9,999.000	Instance 1 Map 1 Map 2 696 736	0x70 (112) 1 9	42	12009	float RWES
5P.LL SP.LL	Limit Minimum Set Point Set the low end of the limit set point range.	-1,999.000 to 9,999.000	-1,999.000	Instance 1 Map 1 Map 2 698 738	0x70 (112) 1 0xA (10)	43	12010	float RWES
L h.5 Lh.S	Limit High Limit Set Point * Set the high process value that will trig- ger the limit.	-1,999.000 to 9,999.000°F or units -1,128.000 to 5,537.000°C	0.0°F or units -18.0°C	Instance 1 Map 1 Map 2 686 726	0x70 (112) 1 4	39	12004	float RWES

^{*} These parameters/prompts are available in these menus with firmware revisions 11.0 and above. ** R: Read, W: Write, E: EEPROM, S: User Set

		Set	up Page					
Display	Parameter Name Description	Range	Default	Modbus Relative Ad- dress	CIP - Class Instance Attribute hex (dec)		Param- eter ID	Data Type and Access **
L L.5 LL.S	Limit Low Limit Set Point * Set the low process value that will trigger the limit.	-1,999.000 to 9,999.000°F or units -1,128.000 to 5,537.000°C	0.0°F or units -18.0°C	Instance 1 Map 1 Map 2 684 724	0x70 (112) 1 3	38	12003	float RWES
SFn.A	Limit Source Function A * Set the source for the limit reset func- tion.	Digital I/O (1142) Fun Function Key (1001)	None	Instance 1 Map 1 Map 2 748	0x70 (112) 1 0x0F (15)		12015	uint RWES
5 .A Si.A	Limit Source Instance A * Set the instance of the function select- ed above.	1 to 12	1		0x70 (112) 1 0x10 (16)		12016	uint RWES
L.Er LEr	Limit Clear Limit * Clear limit once limit condition is safe.	ELr Clear (0) "9nr Ignore (204)		Instance 1 Map 1 Map 2 680 720	0x70 (112) 1		12014	uint W
L.5 Ł L.5 Ł	Limit Limit Status * Reflects whether or not the limit is in a safe or failed mode.	FR iL Fail (32) 5RFE Safe (1667)		Instance 1 Map 1 Map 2 744	0x70 (112) 1 0x0D (13)		12013	uint R
No Dis- play	Limit Limit State Clear limit once limit condition is cleared.	Off (62) None (61) Limit High (51) Limit Low (52) Error (28)		Instance 1 Map 1 Map 2 690 730	0x70 (112) 1 6		12006	uint R

^{*} These parameters/prompts are available in these menus with firmware revisions 11.0 and above. ** R: Read, W: Write, E: EEPROM, S: User Set

		Set	up Page				Setup Page										
Display	Parameter Name Description	Range	Default		CIP - Class Instance Attribute hex (dec)	Pro- fibus Index	Param- eter ID	Data Type and Access **									
o L P L 5 E L Output	Menu																
Fn Fn	Output Digital (1 to 4) Function Select what function will drive this output. Note: Output 2 is always a limit. Use as primary limit connection.	aFF Off (62) L 1P7 Limit (126) RLP7 Alarm (6)	Output 1 - Alarm Output 2 - Limit Output 3 - Off Output 4 - Off	Instance 1 Map 1 Map 2 888 1008 Offset to next instance (Map 1 & Map 2) equals +30	0x6A (106) 1 to 4 5	83	6005	uint RWES									
F , Fi	Output Digital (1 to 4) Output Function Instance Set the instance of the function selected above.	1 to 4	1	Instance 1 Map 1 Map 2 890 1010 Offset to next in- stance (Map 1 & Map 2) equals +30	0x6A (106) 1 to 4 6	84	6006	uint RWES									
a.E ¥ o.ty	Output Process (3) Type Select whether the process output will operate in volts or milliamps.	uaLE Volts (104)	Volts	Instance 3 Map 1 Map 2 800 920	0x76 (118) 3 1	95	18001	uint RWES									
Fn Fn	Output Process (3) Function Set the type of function that will drive this output.	oFF Off (62) ¬□□E Retransmit (213) □□□ Alarm (6)	Off	Instance 3 Map 1 Map 2 802 922	0x76 (118) 3 2	96	18002	uint RWES									
r.5r	Output Process (3) Retransmit Source Select the value that will be retransmitted.	# Analog Input (142)	Analog Input	Instance 3 Map 1 Map 2 804 924	0x76 (118) 3 3	97	18003	uint RWES									
		re available in these m DM, S: User Set	enus with 1	firmware revisi	ons 11.0 a	nd abov	e.										

		Set	up Page					
Display	Parameter Name Description	Range	Default	Modbus Relative Ad- dress	CIP - Class Instance Attribute hex (dec)	Pro- fibus Index	Param- eter ID	Data Type and Access **
F , Fi	Output Process (3) Function Instance Set the instance of the function select- ed above.	1 to 4	1	Instance 3 Map 1 Map 2 806 926	0x76 (118) 3 4	98	18004	uint RWES
5.L a S.Lo	Output Process (3) Scale Low Set the scale low for process output in electrical units. This value; in volts or milliamps, will correspond to 0% PID power output or range low retrans- mit output.	-100.0 to 100.0	0.00	Instance 3 Map 1 Map 2 816 936	0x76 (118) 3 9	99	18009	float RWES
5.h / S.hi	Output Process (3) Scale High Set the scale high for process output in electrical units. This value; in volts or milliamps, will cor- respond to 100% PID power output or range high retrans- mit output.	-100.0 to 100.0	10.00	Instance 3 Map 1 Map 2 818 938	0x76 (118) 3 0x0A (10)	100	18010	float RWES
r.L a r.Lo	Output Process (3) Range Low Set the minimum value of the re- transmit value range in process units. When the retransmit source is at this value, the retransmit output will be at its Scale Low value.	-1,999.000 to 9,999.000°F or units -1,128.000 to 5,537.000°C	0.0°F or units -18°C	Instance 3 Map 1 Map 2 820 940	0x76 (118) 3 0x0B (11)	101	18011	float RWES

^{*} These parameters/prompts are available in these menus with firmware revisions 11.0 and above. ** R: Read, W: Write, E: EEPROM, S: User Set

		Set	up Page				-	
Display	Parameter Name Description	Range	Default	Modbus Relative Ad- dress	CIP - Class Instance Attribute hex (dec)		Param- eter ID	Data Type and Access **
r.hi	Output Process (3) Range High Set the maximum value of the re- transmit value range in process units. When the retransmit source is at this value, the retransmit output will be at its Scale High value.	-1,999.000 to 9,999.000°F or units -1,128.000 to 5,537.000°C	100.0°F or units 38.0°C	Instance 3 Map 1 Map 2 822 942	0x76 (118) 3 0x0C (12)	102	18012	float RWES
o.CA	Output Process (3) Calibration Offset Set an offset value for a process output.	-1,999.000 to 9,999.000°F or units -1,110.555 to 5,555.000°C	0.0°F or units 0.0°C	Instance 3 Map 1 Map 2 812 932	0x76 (118) 3 7	105	18007	float RWES
ALTT 5EL Alarm A	Menu							
R上 当 A.ty	Alarm (1 to 4) Type Select whether the alarm trigger is a fixed value or will track the set point.	oFF Off (62) Pr.AL Process Alarm (76)	Off	Instance 1 Map 1 Map 2 1508 1908 Offset to next in- stance (Map 1 +50, Map 2 +60)	0x6D (109) 1 to 4 0xF (15)	20	9015	uint RWES
5r.A	Alarm (1 to 4) Alarm Source Select what will trigger this alarm.	R Analog Input (142)	Analog Input	Instance 1 Map 1 Map 2 1512 1912 Offset to next in- stance (Map 1 +50, Map 2 +60)	1 to 4 0x11 (17)	21	9017	uint RWES

^{*} These parameters/prompts are available in these menus with firmware revisions 11.0 and above.

^{**} R: Read, W: Write, E: EEPROM, S: User Set

		Set	up Page					
Display	Parameter Name Description	Range	Default	Modbus Relative Ad- dress	CIP - Class Instance Attribute hex (dec)	Pro- fibus Index	Param- eter ID	Data Type and Access **
ቪት ሃ A.hy	Alarm (1 to 4) Hysteresis Set the hysteresis for an alarm. This determines how far into the safe region the process value needs to move be- fore the alarm can be cleared.	0.001 to 9,999.000°F or units 0.001 to 5,555.000°C	1.0°F or units 1.0°C	Instance 1 Map 1 Map 2 1484 1884 Offset to next in- stance (Map 1 equals +50, Map 2 +60)	0x6D (109) 1 to 4 3	24	9003	float RWES
A.Lg	Alarm (1 to 4) Logic Select what the output condition will be during the alarm state.	RL.E Energize on alarm (17) RL.o De-energize on alarm (66)	Close On Alarm	Instance 1 Map 1 Map 2 1488 1888 Offset to next in- stance (Map 1 +50, Map 2 +60)	0x6D (109) 1 to 4 5	25	9005	uint RWES
P.5 d A.Sd	Alarm (1 to 4) Sides Select which side or sides will trigger this alarm.	եսէհ Both (13) հ վեհ High (37) Լսևմ Low (53)	Both	Instance 1 Map 1 Map 2 1486 1886 Offset to next in- stance (Map 1 +50, Map 2 +60)	0x6D (109) 1 to 4 4	26	9004	uint RWES
A.Lo	Alarm (1 to 4) Low Set Point Set the process value that will trigger a low alarm.	-1,999.000 to 9,999.000°F or units -1,128.000 to 5,537.000°C	32.0°F or units 0.0°C	Instance 1 Map 1 Map 2 1482 1882 Offset to next in- stance (Map 1 +50, Map 2 +60)	0x6D (109) 1 to 4 2	18	9002	float RWES
A.hi	Alarm (1 to 4) High Set Point Set the process value that will trigger a high alarm.	-1,999.000 to 9,999.000°F or units -1,128.000 to 5,537.000°C	300.0°F or units 150.0°C	Offset to next in- stance (Map 1 +50, Map 2 +60)	0x6D (109) 1 to 4 1	19	9001	float RWES

^{*} These parameters/prompts are available in these menus with firmware revisions 11.0 and above. ** R: Read, W: Write, E: EEPROM, S: User Set

	Setup Page									
Display	Parameter Name Description	Range	Default	Modbus Relative Ad- dress	CIP - Class Instance Attribute hex (dec)	Pro- fibus Index	Param- eter ID	Data Type and Access **		
ALA	Alarm (1 to 4) Latching Turn latching on or off. A latched alarm has to be turned off by the user.	nLAE Non-Latching (60) LAE Latching (49)	Non- Latch- ing	Instance 1 Map 1 Map 2 1492 1892 Offset to next in- stance (Map 1 +50, Map 2 +60)	1 to 4 7	27	9007	uint RWES		
A.bL	Alarm (1 to 4) Blocking Select when an alarm will be blocked. After start- up and/or after the set point changes, the alarm will be blocked until the process value enters the normal range.	aFF Off (62) 5Er Startup (88) 5EPE Set Point (85) baEh Both (13)	Off	Instance 1 Map 1 Map 2 1494 1894 Offset to next in- stance (Map 1 +50, Map 2 +60)	1 to 4 8	28	9008	uint RWES		
A.Si	Alarm (1 to 4) Silencing Turn silencing on to allow the user to disable this alarm.	aFF Off (62) an On (63)	Off	Instance 1 Map 1 Map 2 1490 1890 Offset to next instance (Map 1 equals +50, for Map 2 equals +60)	0x6D (109) 1 to 4 6	29	9006	uint RWES		
R.d 5 P A.dSP	Alarm (1 to 4) Display Display an alarm message when an alarm is active.	aFF Off (62) an On (63)	On	Instance 1 Map 1 Map 2 1510 1910 Offset to next instance (Map 1 equals +50, for Map 2 equals +60)		30	9016	uint RWES		

^{*} These parameters/prompts are available in these menus with firmware revisions 11.0 and above. ** R: Read, W: Write, E: EEPROM, S: User Set

	Setup Page										
Display	Parameter Name Description	Range	Default	Modbus Relative Ad- dress	CIP - Class Instance Attribute hex (dec)		Param- eter ID	Data Type and Access **			
A.dL	Alarm (1 to 4) Delay Time Set the span of time that the alarm will be delayed after the process value exceeds the alarm set point.	0 to 9,999 seconds	0	Instance 1 Map 1 Map 2 1520 1920 Offset to next in- stance (Map 1 equals +50, for Map 2 equals +60)	0x6D (109) 1 to 4 0x15 (21)	31	9021	uint RWES			
A.Clr	Alarm (1 to 4) Clear Alarm Write to this register to clear an alarm Note: If an alarm is setup to latch when active RELr will appear on the display.	ELr Clear (0) "Enr Ignore (204)		Instance 1 Map 1 Map 2 1504 1904 Offset to next in- stance (Map1 1 equals +50, Map 2 equals +60)	0x6D (109) 1 to 4 0xD (13)		9013	uint W			
A.Sir	Alarm (1 to 4) Silence Alarm Write to this register to silence an alarm Note: If an alarm is setup to silence alarm when active #5 or will appear on the display.	5 L Silence (1010)		Instance 1 Map 1 Map 2 1506 1906 Offset to next instance (Map1 1 equals +50, Map 2 equals +60)	0x6D (109) 1 to 4 0xE (14)		9014	uint W			
#5 E A.St	Alarm (1 to 4) Alarm State Current state of alarm	5Lr Startup (88) nonE None (61) bLo Blocked (12) RLL Alarm low (8) RLh Alarm high (7) RLE Error (28)		Instance 1 Map 1 Map 2 1496 1896 Offset to next in- stance (Map1 1 equals +50, Map 2 equals +60)	0x6D (109) 1 to 4 9		9009	uint R			

^{*} These parameters/prompts are available in these menus with firmware revisions 11.0 and above. ** R: Read, W: Write, E: EEPROM, S: User Set

	Setup Page									
Display	Parameter Name Description	Range	Default	Modbus Relative Ad- dress	CIP - Class Instance Attribute hex (dec)	Pro- fibus Index	Param- eter ID	Data Type and Access **		
FUn 5EL Functio	n Key									
L E u LEv	Function Key (3 to 4) Active Level The Function Key will always power up in the low state. Pressing the Function Key will toggle the selected action.	h igh High (37) Laud Low (53)	High	Instance 3 Map 1 Map 2 1360 1600 Instance 4 Map 1 Map 2 1380 1620	3 to 4 1	137	10001	uint RWES		
F n Fn	Function Key (3 to 4) Action Function Program the EZ Key to trigger an action. Functions respond to a level state change or an edge level change. Note: The Limit Reset function is not available in firmware revision 11.0 and above.	None (61) "Sr.r User Set Restore, edge triggered (227) P.L of Keypad Lockout, level triggered (217) RL p. Alarm Reset, edge triggered (6) Sold Silence Alarms, edge triggered (108) F.AL Force Alarm to occur, level triggered (218) L p. Limit Reset, edge triggered (82)	None	Instance 3 Map 1 Map 2 1364 1604 Instance 4 Map 1 Map 2 1384 1624	0x6E (110) 3 to 4 3	138	10003	uint RWES		
F , Fi	Function Key (3 to 4) Function Instance Select which instance the EZ Key will affect. If only one instance is available, any selection will affect it.	0 to 40	0	Instance 3 Map 1 Map 2 1366 1606 Instance 4 Map 1 Map 2 1386 1626	3 to 4 4	139	10004			

^{*} These parameters/prompts are available in these menus with firmware revisions 11.0 and above. ** R: Read, W: Write, E: EEPROM, S: User Set

	Setup Page									
Display	Parameter Name Description	Range	Default	Modbus Relative Ad- dress	CIP - Class Instance Attribute hex (dec)		Param- eter ID	Data Type and Access **		
9L bL 5E b Global	Menu									
[_ F C_F	Global Display Units Select which scale to use for temperature.	F °F (30) E °C (15)	°F	Instance 1 Map 1 Map 2 1838 2308	0x67 (103) 1 5	110	3005	uint RWES		
AC.LF	Global AC Line Frequency Set the frequency to the applied ac line power source.	50 50 Hz (3) 50 60 Hz (4)	60 Hz	Instance 1 Map 1 Map 2 886 1006	0x6A (106) 1 4	89	1034	uint RWES		
C.L.E.d C.LEd	Global Communications LED Action Turns comms LED on or off for selected comms ports.	[on Comm port 1 (1189) [on Comm port 2 (1190) bobb Comm port 1 and 2 (13) of FF Off (62)	both	Instance 1 Map 1 Map 2 1856 2326	0x6A (103) 1 0x0E (14)		3014	uint RWES		
ZonE Zone	Global Zone Turns Zone LED on or off based on se- lection.	aFF Off (62) an On (63)	On	Instance 1 Map 1 Map 2 2350	0x6A (103) 1 0x1A (26)		3026	uint RWES		
[hAn Chan	Global Channel Turns Channel LED on or off based on selection.	aFF Off (62) an On (63)	On	Instance 1 Map 1 Map 2 2352	0x6A (103) 1 0x1B (27)		3027	uint RWES		
d.Pr 5 d.PrS	Global Display Pairs Defines the number of Display Pairs.	1 to 10	2	Instance 1 Map 1 Map 2 2354			3028	uint RWES		
d.t i d.ti	Global Display Time Time delay in toggling between Display Pairs.	0 to 60	0	Instance 1 Map 1 Map 2 2356	0x6A (103) 1 0x1D (29)		3029	uint RWES		
USr.S USr.S	Global Save Settings As Save all of this controller's settings to the selected set.	5EL User Set 1 (101) 5EL 2 User Set 2 (102) nonE None (61) re available in these m	None	Instance 1 Map 1 Map 2 26 26	0xE (14)	118	1014	uint RWE		

^{*} These parameters/prompts are available in these menus with firmware revisions 11.0 and above. ** R: Read, W: Write, E: EEPROM, S: User Set

		Set	up Page					
Display	Parameter Name Description	Range	Default		CIP - Class Instance Attribute hex (dec)	fibus Index	Param- eter ID	Data Type and Access
USr.r USr.r	Global Restore Settings From Replace all of this controller's settings with another set.	FEEY Factory (31) DONE None (61) SEE I User Set 1 (101) SEE User Set 2 (102)	None	Instance 1 Map 1 Map 2 24 24	0x65 (101) 1 0xD (13)	117	1013	uint RWE
5EL Communications Menu								
PE o L PCoL	Communications 1 Protocol Set the protocol of this controller to the protocol that this network is using.	5Łd Standard Bus (1286) 「Tod Modbus RTU (1057)	Modbus	Instance 1 Map 1 Map 2 2492 2972	0x96 (150) 1 7		17009	uint RWE
Standar	d Bus							
Я <u>d.5</u> Ad.S	Communications 1 Standard Bus Address Set the network address of this controller. Each device on the network must have a unique address. The Zone Display on the front panel will display this number.	1 to 16	1	Instance 1 Map 1 Map 2 2480 2960	0x96 (150) 1 1		17001	uint RWE
Modbus	RTU							
Ad.M	Communications (1 or 2) Modbus Address Set the network address of this controller. Each device on the network must have a unique address.	1 to 247	1	Instance 1 Map 1 Map 2 2482 2962 Instance 2 Map 1 Map 2 2500 2980	0x96 (150) 1 to 2 2		17007	uint RWE

^{**} R: Read, W: Write, E: EEPROM, S: User Set

		Set	up Page				
Display	Parameter Name Description	Range	Default	Modbus Relative Ad- dress	CIP - Class Instance Attribute hex (dec)	Param- eter ID	Data Type and Access **
ЬЯШ d bAUd	Communications (1 or 2) Baud Rate Set the speed of this controller's communications to match the speed of the Modbus serial network.	9600 9,600 (188) 192 19,200 (189) 384 38,400 (190)	9,600	Instance 1 Map 1 Map 2 2484 2964 Instance 2 Map 1 Map 2 2504 2984	0x96 (150) 1 to 2 3	 17002	uint RWE
PAr PAr	Communications (1 or 2) Parity Set the parity of this controller to match the parity of the Modbus serial network.	None (61) EuEn Even (191) add Odd (192)	None	Instance 1 Map 1 Map 2 2486 2966 Instance 2 Map 1 Map 2 2506 2986	0x96 (150) 1 to 2 4	 17003	uint RWE
[_ F C_F	Communications (1 or 2) Display Units Select whether this communications channel will display in Celsius or Fahrenheit. Note:	F Fahrenheit (30) C Celsius (15)	F	Instance 1 Map 1 Map 2 2490 2970	0x96 (150) 1 6	 17050	uint RWE
ГЛh L M.hL	Applies to Modbus and Ethernet. Communications (1 or 2) Modbus Word Order Select the word order of the two 16-bit words in the floating-point values.	Lah , Low-High (1331) h , La High-Low (1330)	Low-High	Instance 1 Map 1 Map 2 2488 2968 Instance 2 Map 1 Map 2 2508 2988	0x96 (150) 1 to 2 5	 17043	uint RWE
ГПЯР Мар	Communications (1 or 2) Data Map If set to 1 the control will use PM legacy mapping. If set to 2 the control will use new mapping to accommodate new functions.	1 to 2	1 if 9th digit of part number is a D or 1 other- wise, 2.			 17059	uint RWE

^{*} These parameters/prompts are available in these menus with firmware revisions 11.0 and above. ** R: Read, W: Write, E: EEPROM, S: User Set

		Set	up Page					
Display	Parameter Name Description	Range	Default	Modbus Relative Ad- dress	CIP - Class Instance Attribute hex (dec)		Param- eter ID	Data Type and Access **
nV.S	Communications (1 or 2) Non-Volatile Save If set to Yes all values written to the control will be saved in EEPROM. The EEPROM allows for approximately one million writes.	YE5 Yes (106) no No (59)	Yes	Instance 1 Map 1 Map 2 2494 2974	0x96 (150) 1 8	198	17051	uint RWE
no dis- play	Communications (1 or 2) Tick Value increases at 1mS rate.	0 to 4,294,967,295		Instance 1 Map 1 Map 2 5020 8950			16006	un- signed 32-bit RWE
Device	let							
Ad.d	Communications (2) DeviceNet™ Node Address Set the DeviceNet™ address for this gateway.	0 to 63	63				17052	
bAUd bAUd	Communications (2) DeviceNet™ Baud Rate Set the DeviceNet speed for this gate- way's communica- tions to match the speed of the serial network.	125 125 kb (1351) 250 250 kb (1352) 500 500 kb (1353)	125				17053	
F C.E FC.E	Communications (2) DeviceNet™ Quick Connect Enable Allows for immediate communication with the scanner upon power up.	No (59) YE 5 Yes (106)	No				17054	
Ao.nb	Communications (2) CIP Implicit Assem- bly Output Member Quantity	1 to 20	20				24009	
Ai.nb	Communications (2) CIP Implicit Assem- bly Input Member Quantity	1 to 20	20				24010	

^{*} These parameters/prompts are available in these menus with firmware revisions 11.0 and above. ** R: Read, W: Write, E: EEPROM, S: User Set

	Setup Page										
Display	Parameter Name Description	Range	Default	Modbus Relative Ad- dress	CIP - Class Instance Attribute hex (dec)	Pro- fibus Index	Param- eter ID	Data Type and Access **			
[_F C_F	Communications (2) Display Units Select which scale to use for temperature passed over communications port 2.	F °F (30) C °C (15)	°F	Instance 2 Map 1 Map 2 2990	0x96 (150) 2 6	199	17050	uint RWE			
nU.S	Communications (2) Non-volatile Save If set to Yes all values written to the control will be saved in EEPROM. The EEPROM allows for approximately one million writes.	<u>ዛ</u> E5 Yes (106) በዕ No (59)	No	Instance 2 Map 1 Map 2 2514 2994	96 (150) 2 8	198	17051	uint RWE			
Profibu	s DP										
P.Add P.Add	Communications (2) Profibus Node Address Set the Profibus address for this control.	0 to 126	126				17060				
A.Loc	Communications (2) Profibus Address Lock When set to yes will not allow address to be changed using software. Can be changed from front panel.	No (59) 9E5 Yes (106)	No				17061				
5EAE Stat	Communications Profibus DP Status Current Profibus status.	rEdy Ready (1662) rn∃ Running (149)					17062	uint R			
[_F C_F	Communications (2) Display Units Select which scale to use for temperature passed over communications port 2.	F °F (30) E °C (15)	°F	Instance 2 Map 1 Map 2 2990	0x96 (150) 2 6	199	17050	uint RWE			

^{*} These parameters/prompts are available in these menus with firmware revisions 11.0 and above. ** R: Read, W: Write, E: EEPROM, S: User Set

		Set	up Page					
Display	Parameter Name Description	Range	Default	Modbus Relative Ad- dress	CIP - Class Instance Attribute hex (dec)		Param- eter ID	Data Type and Access **
nU.S	Communications (2) Non-volatile Save If set to Yes all values written to the control will be saved in EEPROM. The EEPROM allows for approximately one million writes.	YE5 Yes (106)	No	Instance 2 Map 1 Map 2 2514 2994	96 (150) 2 8	198	17051	uint RWE
Modbus	TCP or EtherNet/IF	•						
アワトL M.hL	Communications (2) Modbus Word Order Select the word order of the two 16-bit words in the floating-point val- ues.	Loh , Low-High (1331) h , Lo High-Low (1330)	Low-High	Instance 1 Map 1 Map 2 2488 2968 Instance 2 Map 1 Map 2 2508 2988	0x96 (150) 1 to 2 5		17043	uint RWE
iP.M	Communications (2) IP Address Mode Select DHCP to let a DHCP server assign an address to this module.	dhEP DHCP (1281) F.Add Fixed Address (1284)	DHCP				17012	
Note:	hanging ID address th	ne control power must I	ne cycled f	or the new add	tress to ta	ka affar	•+	
iP.F 1 ip.F1	Communications (2) IP Fixed Address Part 1 Set the IP address of this module. Each device on the network must have a unique address.	0 to 255	169				17014	
ip.F2	Communications (2) IP Fixed Address Part 2 Set the IP address of this module. Each device on the network must have a unique address.	0 to 255	254		one 11 0 -	ad ab	17015	

^{*} These parameters/prompts are available in these menus with firmware revisions 11.0 and above. ** R: Read, W: Write, E: EEPROM, S: User Set

	Setup Page									
Display	Parameter Name Description	Range	Default	Modbus Relative Ad- dress	CIP - Class Instance Attribute hex (dec)		Param- eter ID	Data Type and Access **		
<i>iP.F 3</i> ip.F3	Communications (2) IP Fixed Address Part 3 Set the IP address of this module. Each device on the network must have a unique address.	0 to 255	1				17016			
<i>.Р.F.Ч</i> ip.F4	Communications (2) IP Fixed Address Part 4 Set the IP address of this module. Each device on the network must have a unique address.	0 to 255	1				17017			
<i>iP.5 1</i> ip.S1	Communications (2) IP Fixed Subnet Part 1 Set the IP subnet mask for this module.	0 to 255	255				17020			
<i>iP.52</i> ip.S2	Communications (2) IP Fixed Subnet Part 2 Set the IP subnet mask for this module.	0 to 255	255				17021			
<i>iP.5 3</i> ip.S3	Communications (2) IP Fixed Subnet Part 3 Set the IP subnet mask for this module.	0 to 255	0				17022			
<i>iP.5</i> 4 ip.S4	Communications (2) IP Fixed Subnet Part 4 Set the IP subnet mask for this module.	0 to 255	0				17023			
<i>iP.55</i> ip.S5	Communications (2) IP Fixed Subnet Part 5 Set the IP subnet mask for this module	0 to 255	0				17024			

^{*} These parameters/prompts are available in these menus with firmware revisions 11.0 and above. ** R: Read, W: Write, E: EEPROM, S: User Set

	Setup Page									
Display	Parameter Name Description	Range	Default	Modbus Relative Ad- dress	CIP - Class Instance Attribute hex (dec)		Param- eter ID	Data Type and Access **		
<i>iP.56</i> ip.56	Communications (2) IP Fixed Subnet Part 6 Set the IP subnet mask for this module.	0 to 255	0				17025			
<i>iP.9 l</i> ip.g1	Communications (2) Fixed IP Gateway Part 1 Used for the purpose of sending and receiving messages from another network.	0 to 255	0				17026			
ip.g2	Communications (2) Fixed IP Gateway Part 2 Used for the purpose of sending and receiving messages from another network.	0 to 255	0				17027			
<i>iP.93</i> ip.g3	Communications (2) Fixed IP Gateway Part 3 Used for the purpose of sending and receiving messages from another network.	0 to 255	0				17028			
ip.g4	Communications (2) Fixed IP Gateway Part 4 Used for the purpose of sending and receiving messages from another network.	0 to 255	0				17029			
ip.g5	Communications (2) Fixed IP Gateway Part 5 Used for the purpose of sending and receiving messages from another network.	0 to 255	0				17030			

^{*} These parameters/prompts are available in these menus with firmware revisions 11.0 and above. ** R: Read, W: Write, E: EEPROM, S: User Set

		Set	up Page					
Display	Parameter Name Description	Range	Default	Modbus Relative Ad- dress	CIP - Class Instance Attribute hex (dec)	fibus Index	Param- eter ID	Data Type and Access **
ip.g6	Communications (2) Fixed IP Gateway Part 6 Used for the purpose of sending and receiving messages from another network.	0 to 255	0				17031	
<i>ГПЬ.Е</i> мь.Е	Communications (2) Modbus TCP Enable Activate Modbus TCP.	YE5 Yes (106) no No (59)	Yes				17041	
E , P.E EiP.E	Communications (2) EtherNet/IP™ En- able Activate Ethernet/ IP™.	YE5 Yes (106) no No (59)	Yes				17042	
Ao.nb	Communications (2) EtherNet/IP™ Output Assembly When using EtherNet/IP set the CIP Implicit Assembly Output Member Quantity	1 to 20	20				24009	
Ai.nb	Communications (2) EtherNet/IP™ Input Assembly When using Ether- Net/IP set the CIP Implicit Assembly Input Member Quantity	1 to 20	20				24010	
[_ F C_F	Communications (2) Display Units Select which scale to use for temperature passed over communications port 2.	F °F (30) Γ °C (15)	°F	Instance 2 Map 1 Map 2 2990		199	17050	uint RWE

^{*} These parameters/prompts are available in these menus with firmware revisions 11.0 and above. ** R: Read, W: Write, E: EEPROM, S: User Set

	Setup Page									
Display	Parameter Name Description	Range	Default	Modbus Relative Ad- dress	CIP - Class Instance Attribute hex (dec)	fibus	Param- eter ID	Data Type and Access **		
nV.S	Communications (2) Non-volatile Save If set to Yes all values written to the control will be saved in EEPROM. The EEPROM allows for approximately one million writes.	YE5 Yes (106) no No (59)	No	Instance 2 Map 1 Map 2 2514 2994	96 (150) 2 8	198	17051	uint RWE		

^{*} These parameters/prompts are available in these menus with firmware revisions 11.0 and above. ** R: Read, W: Write, E: EEPROM, S: User Set

7

Chapter 7: Factory Page

Navigating the Factory Page

To navigate to the Factory Page follow the steps below:

- 1. From the Home Page, press and hold both the Advance

 and Infinity

 keys for six seconds.
- 2. Press the Up or Down key to view available menus.
- 3. Press the Advance Key

 to enter the menu of choice.
- 4. If a sub-menu exists (more than one instance), press the Up ◆ or Down ♦ key to select and then press the Advance Key ⊚ to enter.
- 5. Press the Up \bullet or Down \bullet key to move through available menu prompts.
- 6. Press the Infinity Key to move backwards through the levels: parameter to sub-menu, sub-menu to menu, menu to Home Page.
- 7. Press and hold the Infinity Key of for two seconds to return to the Home Page.

On the following pages, top level menus are identified with a yellow background color.

Note:

Some of these menus and parameters may not appear, depending on the controller's options. See model number information in the Appendix for more information. If there is only one instance of a menu, no sub-menus will appear.

Note:

Some of the listed parameters may not be visible. Parameter visibility is dependent upon controller part number.

CUSE	ULoE
F[LY Custom Setup Menu	F[LY Security Setting Menu
	EodE Public Key
EU5Ł Custom Setup (1 to 20)	PR55 Password
PRr Parameter	
ııd Instance ID	d iR9
	F[LY Diagnostics Menu
LoC	Pn Part Number
F[LY] Security Setting Menu	FEu Software Revision
LoC.o Operations Page	5.6 L d Software Build Number
PRS.E Password Enabled	5n Serial Number
rLoE Read Lock	dREE Date of Manufacture
5LaE Write Security	P.RE IP Actual Address Mode
Locked Access Level	PR IP Actual Address Part 1
roll Rolling Password	P.R2 IP Actual Address Part 2
PR5. User Password	PR∃ IP Actual Address Part 3
PRS.R Administrator Password	ा P. R. Ч IP Actual Address Part 4

• 81 •

		Factory	/ Page				
Display	Parameter Name Description	Range	Default	CIP Class Instance Attri- bute hex (dec)	Pro- fibus Index	eter	Data Type and Access **
Custom							
PAr Par	Custom Parameter 1 to 20 Select the parameters that will appear in the Home Page. The Parameter 1 value will appear in the upper display of the Home Page. It cannot be changed with the Up and Down Keys in the Home Page. The Parameter 2 value will appear in the lower display in the Home Page. It can be changed with the Up and Down Keys, if the parameter is a writable one. Scroll through the other Home Page parameters with the Advance Key The Parameter is a writable one. Scroll through the other Home Page parameters with the Advance Key The Parameter is a writable one. Scroll through the other Home Page parameters on the Home Page parameters on the Home page. For more information on Display Pairs see the section in this guide entitled "Modifying the Display Pairs". The Parameter 1 value Page Page Page Page Page Page Page Pag	ROM, S: User Set	See: Home Page			14005	uint RWES

		Factory	/ Page					
Display	Parameter Name Description	Range	Default	Modbus Relative Ad- dress	CIP Class Instance Attri- bute hex (dec)	Pro- fibus Index		Data Type and Access **
iid	Custom (1 to 20) Instance ID Select which instance of the parameter will be selected.	1 to 4					14003	uint RWES
Lo[F[EY Lock Me	enu							
LoC.o	Operations Page Change the security level of the Operations Page.	1 to 3	2	Instance 1 Map 1 Map 2 1832 2302	0x67 (103) 1 2		3002	uint RWE
PRS.E LoC.P	Security Setting Password Enable Set to On to require a pass- word for menu changes.	aFF Off	Off				3009	uint RWE
rLoC	Security Setting Read Lock Set the read security clearance level. The user can access the selected level and all lower levels. If the Set Lockout Security level is higher than the Read Lockout Security, the Read Lockout Security level takes priority.	1 to 5	5	Instance 1 Map 1 Map 2 1848 2318	0x67 (103) 1 0x0A (10)		3010	uint RWE

		Factory	/ Page					
Display	Parameter Name Description	Range	Default		CIP Class Instance Attri- bute hex (dec)	Pro- fibus Index	eter	Data Type and Access **
5L a E SLoC	Security Setting Write Security Set the write security clearance level. The user can access the selected level and all lower levels. If the Set Lockout Security level is higher than the Read Lockout Security, the Read Lockout Security, the Read Lockout Security level takes priority.	0 to 5	5	Instance 1 Map 1 Map 2 1844 2314	0x67 (103) 1 0x0B (11)		3011	uint RWE
LoC.L LoC.L	Security Setting Locked Access Level Determines user level menu visibility when Password Enable is set to on. See Features section under Password Security.	1 to 5	5				3016	uint RWE
roLL	Security Setting Rolling Password When power is cycled a new Public Key will be displayed and User Password changes.	aFF Off	Off				3019	uint RWE
PAS.u PAS.u	Security Setting User Password Used to acquire access to menus made available through the Locked Access Level setting. d, W: Write, E: EEP	10 to 999 ROM. S: User Set	63				3017	uint RWE

		Factory	/ Page					
Display	Parameter Name Description	Range	Default	Modbus Relative Ad- dress	CIP Class Instance Attri- bute hex (dec)	Pro- fibus Index		Data Type and Access **
PAS.A PAS.A	Security Setting Administrator Password Used to acquire full access to all menus includ- ing disabling or changing pass- words.	10 to 999	156				3018	uint RWE
ULo[F[ŁY								
Unlock	Menu							
CodE	Security Setting Public Key If Rolling Password turned on, generates a random number when power is cycled. If Rolling Password is off fixed number will be displayed. The key can be used to gain access when password is not known.	Customer Specific	0				3020	uint R
PASS PASS	Security Setting Password Enter the User or Administrator password to gain access. After valid password is supplied exit this menu and re-enter the Security Menu via the Factory Page. d, W: Write, E: EEP	-1999 to 9999	0				3022	int RW

		Factory	/ Page						
Display	Parameter Name Description	Range	Default		CIP Class Instance Attri- bute hex (dec)	Pro- fibus Index	eter	Data Type and Access **	
d , R 9 F [L Y Diagnos	J , R9								
Pn Pn	Diagnostics Part Number Display this controller's part number.	15 characters			0x65 (101) 1 9	115	1009	string R	
rEu rEu	Diagnostics Software Revision Display this controller's firmware revision number.	1 to 10		Instance 1 Map 1 Map 2 4 4	0x65 (101) 1 3	116	1003	string R	
5.bL d S.bLd	Diagnostics Software Build Number Display the firmware build number.	0 to 2,147,483,647		Instance 1 Map 1 Map 2 8 8	0x65 (101) 1 5		1005	dint R	
Sn Sn	Diagnostics Serial Number Display the serial number.	0 to 2,147,483,647		Instance 1 Map 1 Map 2 12 12	0x65 (101) 1 0x20 (32)		1032	string R	
dALE dAtE	Diagnostics Date of Manufacture Display the date code (YYWW). Where YY = year and WW= week.	0 to 2,147,483,647		Instance 1 Map 1 Map 2 14 14	0x65 (101) 1 8		1008	dint R	
No Dis- play	Diagnostics Hardware ID Display the Hardware ID.	0 to 2,147,483,647		Instance 1 Map 1 Map 2 0 0	0x65 (101) 1 1		1001	dint R	
No Dis- play	Diagnostics Firmware ID Display the Firmware ID.	0 to 2,147,483,647		Instance 1 Map 1 Map 2 2 2	0x65 (101) 1 2		1002	dint R	
iP.AC	Diagnostics IP Address Mode Actual address mode (DHCP or Fixed).	dhEP DHCP (1281) F.Rdd Fixed Address (1284)	DHCP				17013		
** R: Rea	d, W: Write, E: EEP	ROM, S: User Set				ı	ı		

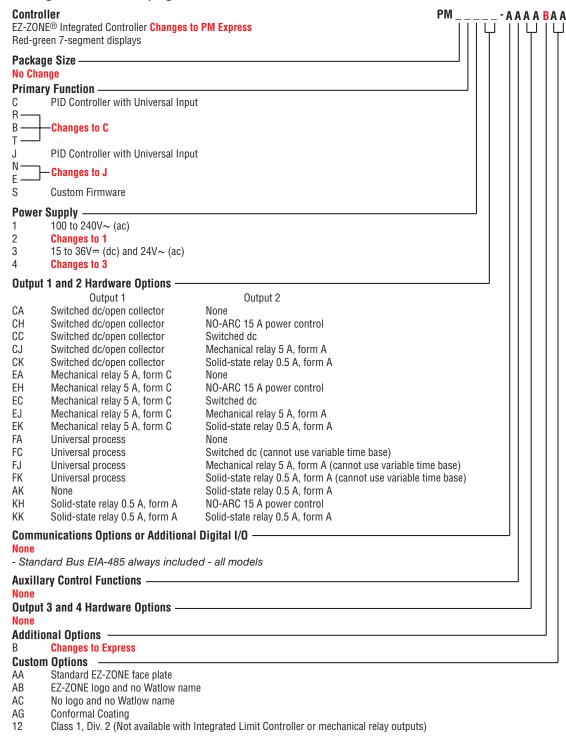
		Factory	/ Page				
Display	Parameter Name Description	Range	Default	CIP Class Instance Attri- bute hex (dec)	Pro- fibus Index		Data Type and Access **
iP.A I	Diagnostics IP Actual Address Part 1 Actual IP address of this module. Note: Although it appears as if this can be changed here this is a read only parameter. Go to Setup Page and then the Com Menu to change.	0 to 255		 		17014	R
iP.A2	Diagnostics IP Actual Address Part 2 Actual IP address of this module. Note: Although it appears as if this can be changed here this is a read only parameter. Go to Setup Page and then the Com Menu to change.	0 to 255		 		17015	R
ip.A3	Diagnostics IP Actual Address Part 3 Actual IP address of this module. Note: Although it appears as if this can be changed here this is a read only parameter. Go to Setup Page and then the Com Menu to change. Id, W: Write, E: EEP	0 to 255		 		17016	R

		Factory	/ Page					
Display	Parameter Name Description	Range	Default		CIP Class Instance Attri- bute hex (dec)	Pro- fibus Index	eter	Data Type and Access **
iP.A4	Diagnostics IP Actual Address Part 4 Actual IP address of this module. Note: Although it appears as if this can be changed here, this is a read only parameter. Go to Setup Page and then the Com Menu to change.	0 to 255					17017	R
EAL FEEY	tion Menu							
ГЛ _Ш Mv	Calibration Electrical Measurement Read the raw electrical value for this input in the units corresponding to the Sensor Type (Setup Page, Analog Input Menu) setting.	-3.4e38 to 3.4e38		Instance 1 Map 1 Map 2 400 400	0x68 (104) 1 0x15 (21)		4021	float R
EL 1.0 ELi.0	Calibration Electrical Input Offset Change this value to calibrate the low end of the input range.	-1,999.000 to 9,999.000	0.0	Instance 1 Map 1 Map 2 378 378	0x68 (104) 1 0x0A (10)		4010	float RWES
EL 15 ELi.S	Calibration Electrical Input Slope Adjust this value to calibrate the slope of the in- put value. ad, W: Write, E: EEP	-1,999.000 to 9,999.000 ROM, S: User Set	1.0	Instance 1 Map 1 Map 2 380 380	0x68 (104) 1 0xB (11)		4011	float RWES

		Factory	/ Page					
Display	Parameter Name Description	Range	Default		CIP Class Instance Attri- bute hex (dec)	Pro- fibus Index		Data Type and Access **
EL a.a ELo.o	Calibration (3) Electrical Output Offset Change this value to calibrate the low end of the output range.	-1,999.000 to 9,999.000	0.0	Instance 3 Map 1 Map 2 808 928	0x76 (118) 3 5		18005	float RWES
EL a.5 ELo.S	Calibration (3) Electrical Output Slope Adjust this value to calibrate the slope of the output value.	-1,999.000 to 9,999.000	1.0	Instance 3 Map 1 Map 2 810 930	0x76 (118) 3 6		18006	float RWES
Pn Pn	Calibration (1 to 2) Part Number Displays cur- rent setting for control model number.	FELY Factory USEr User						uint R
CodE CodE	Calibration (1 to 3) Public Key Changes the control to User or back to original model number as shown on the side of the control.	250 I User Settings 606 Factory model number	4999					uint RWES

^{**} R: Read, W: Write, E: EEPROM, S: User Set

Chapter 8: Features


Changing PM Integrated Model Number to PM Express	92
Saving and Restoring Settings	94
Programming the Home Page	
Inputs	
Calibration Offset	94
Calibration	95
Filter Time Constant	97
Sensor Selection	97
Set Point Minimum and Maximum	97
Scale High and Scale Low	97
Range High and Range Low	
Outputs	98
Retransmitting a Process Value or Set Point	98
Resetting a Tripped Limit	98
Alarms	99
Process Alarms	99
Set Points	99
Hysteresis	100
Latching	100
Silencing	100
Blocking	101
Using Lockout and Password Security	101
Using Lockout Method 1 (Read and Set Lock)	101
Using Lockout Method 2 (Password Enable)	103
Modbus - Using Programmable Memory Blocks	105
CIP - Communications Capabilities	106
CIP Implicit Assemblies	107
Profibus DP - (Decentralized Peripherals)	108
Software Configuration	108
Using EZ-ZONE Configurator Software	108

Changing PM Integrated Model Number to PM Express

EZ-ZONE PM firmware revisions of 13 and above allow the user to switch between a PM Integrated control to a PM Express. Switching to a PM Express eliminates the complexity of the advanced PM Integrated control by allowing the user to operate with a simplified menu structure.

Note:

When switching from an integrated control to an Express version, optional PM hardware (even though installed) and firmware features not available in a PM Express will no longer work. To see exactly what is impacted by this change, compare the chart below to the ordering information page in this document.

How to Change the Controller Model Number

- 1. Enter Factory Page F ☐ L Y, Calibration Menu ☐ R L via front panel by pressing the Infinity or Reset Key and the Advance Key ⑤ together or using EZ-ZONE Configurator software.
- 2. Once there, use the Advance Key
 to navigate to the Part Number Pn prompt. The top display will show factory F[L y indicating the factory model number as shown on the decal located on the side of the control is currently in effect.
- 3. Push the Advance Key \odot , Public Key $\Box \Box \Box E$ prompt will be displayed and the number 4999 in the top display.
- 4. Using the up or down Arrow Keys enter 2501 and push the Advance Key ⑤ to execute the change. The controller will reboot and the new controller model number is in effect. All previous settings are lost and the controller must be reprogrammed for the application. Be sure to label the controller with the new model number for future reference.

Note:

As noted above, when switching from a PM Standard to a PM Express version, optional hardware (even though installed) may no longer work. Also, all settings will be defaulted to the selected model when switched.

Note:

After switching the model number to a PM Express this document will no longer apply to the control. Click on the link that follows to acquire the latest version of the PM PID Express User's Guide. http://www.watlow.com/en/Resources-And-Support/Technical-Library/User-Manuals

Once there, simply enter express in the "Keyword" field to find the appropriate document.

How to Restore Original PM Factory Settings and Model Number

- 1. Enter Factory Page F [+ ½], Calibration Menu [R] via front panel by pressing the Infinity
 or Reset Key and the Advance Key
 together or using EZ-ZONE Configurator software.
- 2. Once there, use the Advance Key (a) to navigate to the Part Number Pn prompt. The upper display will show user USEr indicating the user's selected model number is currently in effect.
- 3. Push the Advance Key where the Public Key prompt will appear in the lower display and the number 4999 in the upper display.
- 4. Using the up or down arrow keys enter 505 and push the Advance Key (a) to execute the change. The controller will reboot and the new controller model number is in effect. All previous settings are lost and the controller must be reprogrammed for the application. Be sure to label the controller with the new model number for future reference.

Note:

When switching from a PM Express back to the original model number all original optional hardware will again be enabled for use (assuming all original hardware is still installed). Also, when executing this step the control will be factory defaulted back to the original model number (as shown on the side of the control) at zone address 1. This User's Guide would once again apply to this control.

Saving and Restoring Settings

Recording setup and operations parameter settings for future reference is very important. If you unintentionally change these, you will need to program the correct settings back into the controller to return the equipment to operational condition.

After you program the controller and verify proper operation, select Save Settings As <u>U5r.5</u> (Setup Page, Global Menu) to save the settings into either of two files (<u>5ELI</u> or <u>5ELZ</u>) in the control memory.

Note:

Saving the settings overwrites any previously saved collection of settings. Be sure to document all the controller settings.

If the settings in the controller are altered a user can return the controller to one of three settings. If previously saved, 5EEI or 5EEE can be restored as well as the factory FEEE settings. Navigate to the Setup Page, Global Menu to find the Restore USCE prompt. A digital input or the Function Key can also be configured to restore parameters.

Note:

When restoring factory defaults, I/O assemblies for Modbus, DeviceNet, Profibus and Ethernet along with the zone address will be overwritten when restoring factory defaults.

Programming the Home Page

Watlow's patented user-defined menu system improves operational efficiency. The user-defined Home Page provides you with a shortcut to monitor or change the parameter values that you use most often.

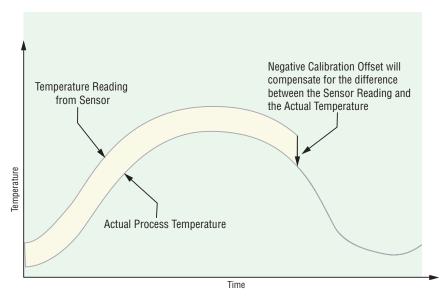
You can create your own Home Page with as many as 20 of the active parameters. When a parameter normally located in the Setup Page or Operations Page is placed in the Home Page, it is accessible through both. If you change a parameter in the Home Page, it is automatically changed in its original page. If you change a parameter in its original page it is automatically changed in the Home Page.

The default parameters will automatically appear in the Home Page.

Change the list of parameters in the Home Page from the Custom Menu [U5] (Factory Page)

Inputs

Calibration Offset


Calibration offset allows a device to compensate for an inaccurate sensor, lead resistance or other factors that affect the input value. A positive offset increases the input value, and a negative offset decreases the input value. The input offset value can be viewed or changed with Calibration Offset LER (Operations Page, Analog Input Menu).

Calibration

Before performing any calibration procedure, verify that the displayed readings are not within published specifications by inputting a known value from a precision source to the analog in-

put. Next, subtract the displayed value with the known value and compare this difference to the published accuracy range specification for that type of input.

Use of the Calibration Offset LR parameter found in the Operations Page PEr, Analog Input Menu R shifts the readings across the entire displayed range by the offset value. Use this parameter to compensate for sensor error or sensor placement error. Typically this value is set to zero.

Equipment required while performing calibration:

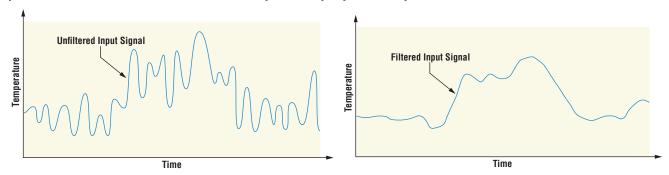
Obtain a precision source for millivolts, volts, milliamperes or resistance depending on the sensor type to be calibrated. Use copper wire only to connect the precision source to the controller's input. Keep leads between the precision source and controller as short as possible to minimize error. In addition, a precision volt/ohm meter capable of reading values to 4 decimal places or better is recommended. Prior to calibration, connect this volt/ohm meter to the precision source to verify accuracy. Actual input values do NOT have to be exactly the recommended values, but it IS critical that the actual value of the signal connected to the controller be accurately known to at least four digits.

Calibration of Analog Inputs:

To calibrate an analog input, you will need to provide a source of two electrical signals or resistance values near the extremes of the range that the application is likely to utilize. See recommended values below:

Sensor Type	Precision Source Low	Precision Source High
thermocouple	0.000 mV	50.000 mV
millivolts	0.000 mV	50.000 mV
volts	0.000V	10.000V
milliamps	0.000 mA	20.000 mA
100 Ω RTD	50.00 Ω	350.0 Ω
1,000 Ω RTD	500.0 Ω	3,500 Ω
thermistor 5 $k\Omega$	50.00	5,000
thermistor 10 $k\Omega$	150.0	10,000
thermistor 20 kΩ	1,800	20,000
thermistor 40 k Ω	1,700	40,000
potentiometer	0.000	1,200

Note:


The user may only calibrate one sensor type. If the calibrator interferes with open thermocouple detection, set Sensor Type $5E_D$ in Setup Page $5E_L$, Analog Input Menu B_L to millivolt PP_U instead of Thermocouple E_L to avoid interference between the calibrator and open thermocouple detect circuit for the duration of the calibration process. Be sure to set sensor type back to the thermocouple type utilized.

- 1. Disconnect the sensor from the controller.
- 2. Record the Calibration Offset LA parameter value in the Operations Page OPEr, Analog Input Menu A, then set value to zero.
- 3. Wire the precision source to the appropriate controller input terminals to be calibrated. Do not have any other wires connected to the input terminals. Please refer to the Install and Wiring section of this manual for the appropriate connections.
- 4. Ensure the controller sensor type is programmed to the appropriate Sensor Type $5E_{R}$ to be utilized in the Setup Page $5E_{L}$, Analog Input Menu R_{L} .
- 5. Enter Factory Page F[LY, Calibration Menu [AL via front panel or EZ-ZONE Configurator Software.
- 6. Select the Calibration [FIL] input instance to be calibrated. This corresponds to the analog input to be calibrated.
- 7. Set Electrical Input Slope *EL* .5 to 1.000 and Electrical Input Offset *EL* .0 to 0.000 (this will cancel any prior user calibration values)
- 8. Input a Precision Source Low value. Read Electrical Measurement value [7] of controller via EZ-Configurator or RUI. This will be referred to as Electrical Measured Low. Record low value ______
- 9. Input a Precision Source High value.
- 10. Read Electrical Measurement value [7] of controller via EZ-Configurator or RUI. This will be referred to as Electrical Measured High. Record high value ______
- 11. Calculated Electrical Input Slope = (Precision High Precision Low) / (Electrical Measured High Electrical Measured Low) Calculated Slope value _____
- 12. Calculated Electrical Input Offset = Precision Low (Electrical Input Slope * Measured Low) Calculated Offset value
- 13. Enter the calculated Electrical Input Slope *EL* .5 and Electrical Input Offset *EL* .0 into the controller.
- 14. Exit calibration menu.
- 15. Validate calibration process by utilizing a calibrator to the analog input.
- 16. Enter calibration offset as recorded in step 2 if required to compensate for sensor error.

Setting Electrical Input Slope EL .5 to 1.000 and Electrical Input Offset ELI.0 to 0.000, restores factory calibration as shipped from factory.

Filter Time Constant

Filtering smooths an input signal by applying a first-order filter time constant to the signal. Filtering the displayed value makes it easier to monitor. Filtering the signal may improve the performance of PID control in a noisy or very dynamic system.

Adjust the filter time interval with Filter Time F L (Setup Page, Analog Input Menu). Example: With a filter value of 0.5 seconds, if the process input value instantly changes from 0 to 100 and remained at 100, the display will indicate 100 after five time constants of the filter value or 2.5 seconds.

Sensor Selection

You need to configure the controller to match the input device, which is normally a thermocouple, RTD or process transmitter.

Select the sensor type with Sensor Type 5En (Setup Page, Analog Input Menu).

Set Point Minimum and Maximum

The controller has the ability to restrict the Set Points for the following modes of operation:

- a. For *closed loop control* use Minimum Set Point and Maximum Set Point found in the Setup Page, Loop Menu.
- b. For *Manual Power (open loop control)* use Minimum Power and Maximum Power found in the Setup Page, Loop Menu.

Scale High and Scale Low

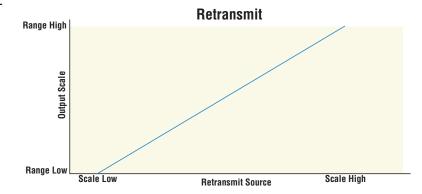
When an analog input is selected as process voltage or process current input, you must choose the value of voltage or current to be the low and high ends. For example, when using a 4 to 20 mA input, the scale low value would be 4.00mA and the scale high value would be 20.00mA. Commonly used scale ranges are: 0 to 20mA, 4 to 20mA, 0 to 5V, 1 to 5V and 0 to 10V.

You can create a scale range representing other units for special applications. You can reverse scales from high values to low values for analog input signals that have a reversed action. For example, if 50 psi causes a 4 mA signal and 10 psi causes a 20mA signal.

Scale low and high low values do not have to match the bounds of the measurement range. These along with range low and high provide for process scaling and can include values not measurable by the controller. Regardless of scaling values, the measured value will be constrained by the electrical measurements of the hardware. Select the low and high values with Scale Low 5.Lo and Scale High 5.ho. Select the displayed range with Range Low c.Lo and Range High c.ho. (Setup Page, Analog Input Menu).

Range High and Range Low

With a process input, you must choose a value to represent the low and high ends of the current or voltage range. Choosing these values allows the controller's display to be scaled into the actual working units of measurement. For example, the analog input from a humidity transmitter could represent 0 to 100 percent relative humidity as a process signal of 4 to 20mA. Low scale would be set to 0 to represent 4 mA and high scale set to 100 to represent 20 mA. The indication on the display would then represent percent humidity and range from 0 to 100 percent with an input of 4 to 20mA. Select the low and high values with Range Low r.L.p. and Range High r.h. (Setup Page, Analog Input Menu).


Outputs

Retransmitting a Process Value or Set Point

The retransmit feature allows a process output to provide an analog signal that represents the set point or process value. The signal may serve as a remote set point for another controller or as an input for a chart recorder documenting system performance over time.

In choosing the type of retransmit signal the operator must take into account the input im-

pedance of the device to be retransmitted to and the required signal type, either voltage or milliamps. Typically applications might use the retransmit option to record one of the variables with a chart recorder or to generate a set point for other controls in a multi-zone application.

Output 3 can be ordered as process output. Select retransmit r r r L as the Function r L (Setup Page, Output

Menu). Set the output to volts up! Le or milliamps [77] with Type a.L.y. Select the signal to retransmit with Retransmit Source c.5c. Set the range of the process output with Scale Low 5.L.p. and Scale High 5.h.. Scale the retransmit source to the process output with Range Low c.L.p. and Range High c.h..

When the retransmit source is at the Range Low value, the retransmit output will be at its Scale Low value. When the retransmit source is at the Range High value, the retransmit output will be at its Scale High value.

Resetting a Tripped Limit

Output 2 will always be a Form A (normally open) Mechanical Relay and it will always be internally tied to the limit function. When the limit is in a safe state the internal coil for this relay will be energized, therefore the relay will be closed. When a condition occurs that causes the limit to trip, the internal coil will deengerize causing the relay to latch open. When the condition that caused the limit to trip has been resolved, the relay will remain latched open until manually reset. The process to reset a latched limit can be different from control to control and is dependent upon the controller firmware version.

To check the firmware revision of your control do one of the following:

- 1. Cycle power to the control while observing the number in the top display (this momentary numerical display reflects the current installed firmware version).
- 2. Navigate to the Factory Page by simultaneously pushing and holding the Advance Key and the Reset Key for approximately 8 seconds and then use the up or down arrow key to navigate to the Diagnostic Menu. Once there, push the Advance Key twice where the revision reu will be shown in the lower display and the upper display will indicate the current firmware revision.

Prior to firmware release 11.0:

- 1. Push the Reset Key
- 2. Configure a digital input with the Action Function set to Limit Reset (navigate to the Setup Page under the Digital I/O Menu).
- 3. Use a field bus protocol, i.e., Modbus, EtherNet/IP, etc..., where a value of zero would be written to the associated address (navigate to the Operations Page and look for Clear Limit under the Limit Menu to find appropriate address).
- 4. Cycle the power to the controller.

Firmware release 11.0 and above:

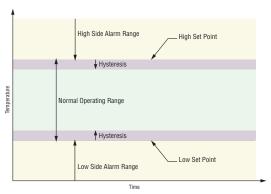
- 1. Push the Reset Key
- 2. Follow the steps below:
- 2a. Navigate to the Setup Page and then the Limit Menu
- 2b. Set Source Function A to the desired device that will reset the limit (Digital I/O or Function Key)
- 2c. Define the Source Instance
- 3. Use a field bus protocol, i.e., Modbus, EtherNet/IP, etc...where a value of zero would be written to the associated address (navigate to the Operations Page and look for Clear Limit under the Limit Menu to find appropriate address).
- 4. Cycle the power to the controller.

Alarms

Alarms are activated when the output level, process value or temperature leaves a defined range. A user can configure how and when an alarm is triggered, what action it takes and whether it turns off automatically when the alarm condition is over. Configure alarm outputs in the Setup Page before setting alarm set points. Alarms do not have to be assigned to an output. Alarms can be monitored and controlled through the front panel or by using software.

Process Alarms

A process alarm uses one or two absolute set points to define an alarm condition. Select the type with Type REY (Setup Page, Alarm Menu).

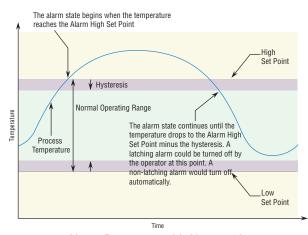

Set Points

The high set point defines the process value or temperature that will trigger a high side alarm. The low set point defines the temperature that will trigger a low side alarm. View or change alarm set points with Low Set Point RL a and High Set Point Rh (Operations Page, Alarm Menu).

Hysteresis

An alarm state is triggered when the process value reaches the high or low set point. Hysteresis defines how far the process must return into the normal operating range before the alarm can be cleared.

Hysteresis is a zone inside each alarm set point. This zone is defined by adding the hysteresis value to the low set point or subtracting the hysteresis value from the high set point. View or change hysteresis with Hysteresis Rhy (Setup Page, Alarm Menu).


Alarm Set Points and Hysteresis

Latching

A latched alarm will remain active after the alarm condition has passed. It can only be de-

activated by the user. An active message, such as an alarm message, will cause the display to toggle between the normal settings and the active message in the upper display and RLLn in the lower display. Push the Advance Key (a) to display and the message source in the lower display and the message source in the lower display. Use the Up (a) or Down (b) keys to scroll through possible responses, such as Clear [Lr] or Silence (5 L). Then push the Advance (a) or Infinity (b) key to execute the action.

See the Keys and Displays chapter and the Home Page chapter for more details. An alarm that is not latched (self-clearing) will deactivate

Alarm Response with Hysteresis

automatically when the alarm condition has passed. Turn latching on or off with Latching RLR (Setup Page, Alarm Menu).

Silencing

If silencing is on the operator can disable the alarm output while the controller is in an alarm state. The process value or temperature has to enter the normal operating range beyond the hysteresis zone to activate the alarm output function again. An active message, such as an alarm message, will cause the display to toggle between the normal settings and the active message in the upper display and REED in the lower display.

1. Push the Advance Key (a) to display and the upper display and the message source in the lower display.

2. Use the Up ♠ and Down ♠ keys to scroll through possible responses, such as Clear LLr or Silence 5 1L. Then push the Advance ⑥ or Infinity ◎ key to execute the action.

See the Keys and Displays chapter and the Home Page chapter for more details. Turn silencing on or off with Silencing R5. (Setup Page, Alarm Menu).

Blocking

Blocking allows a system to warm up after it has been started up. With blocking on, an alarm is not triggered when the process temperature is initially lower than the low set point or higher than the high set point. The process temperature has to enter the normal operating range beyond the hysteresis zone to activate the alarm function. If the EZ-ZONE PM has an output that is functioning as a deviation alarm, the alarm is blocked when the set point is changed, until the process value re-enters the normal operating range. Turn blocking on or off with Blocking RbL (Setup Page, Alarm Menu).

Using Lockout and Password Security

If unintentional changes to parameter settings might raise safety concerns or lead to down-time, you can use the lockout feature to make them more secure. There are two methods of lockout that can be deployed, both of which are accessible from the Factory Page.

- Method 1- Change the value of the Read Lock rtal (1 to 5) and Set Lock 5tal (0 to 5) prompts where the higher the value or setting for each translates to a higher security clearance (greater access).
- Method 2- Enable Password Security PRS.E and then modify the Lock Level Lock Level Lock value which ranges from 1 to 5. See the section entitled Using Lockout Method 2 for more detail.

Using Lockout Method 1 (Read and Set Lock)

All Pages have security levels assigned where two of those cannot be changed (Home and Setup). Defaults (factory settings) for each are shown below:

- Home Page = 1
- Operations Page = 2 (changeable to 1, 2 or 3)
- Setup Page = 4
- Profiling Page = 3 (changeable to 1, 2 or 3)
- Factory Page = 5*
- * The Factory Page is always visible where all menus within it may or may not be visible/writable. For further detail see table "Factory Page Menus".

The table below represents the various levels of lockout for the Set Lockout Security prompt 5100 and the Read Lockout Security prompt 7100. Looking at the table, "Y" equates to yes (can write/read) where "N" equates to no (cannot write/read). The colored cells simply differentiate one level from the next while also showing the level where read/write is enabled. As stated previously, the Set Lockout has 6 levels (0 to 5) of security where the Read Lockout has 5 (1 to 5). Therefore, level "0" applies to Set Lockout only.

Lockout Security 54 of and real								
Pages		Se	curi	ty L	evel			
Pages	0	1	2	3	4	5		
Home Page (cannot be changed)	N	Υ	Υ	Υ	Υ	Υ		
Operations Page	N	N	Υ	Υ	Υ	Υ		
Setup Page (cannot be changed)	N	N	N	N	Υ	Υ		
Factory Page	Υ	Υ	Υ	Υ	Υ	Υ		

Being able to change the page security level for the Operations and Profile pages allows a user to give access to the Profile Page while locking out the Operations Page. The following example shows how the Lockout feature may be used to accomplish this:

Changing Security Levels:

- 1. From the Home Page, press and hold the Infinity Key and the Advance Key for approximately six seconds. ["5"] will appear in the upper display and F[] will appear in the lower display.
- 2. Press the Up Key until Loc appears in the upper display and Fcty will appear in the lower display.
- 3. Press the Advance Key

 until Lock Operations prompt LaLa appears in the bottom display.
- 4. Press the Up Key \bigcirc to change the default value from \supseteq to \supseteq .
- 5. Press the Advance Key
 again and change the Lock Profiling prompt Local appears in the bottom display.
- 6. Press the Down Key \bigcirc to change the default value from \exists to \supseteq .
- 7. Press the Advance Key

 until Read Lock Loc appears in the bottom display.
- 8. Press the Down Key \odot to change the default value from 5 to 2.
- 9. Press the Advance Key \odot until Set Lock $5 L \circ E$ appears in the bottom display.
- 10. Press the Down Key ♥ to change the default value from 5 to 4.

With the above settings, the Home Page and the Profiling Page can be accessed, and all writable parameters can be written to. Due to the Read lock setting of 2, all pages with security levels greater than 2 will be locked out (inaccessible).

Another example of Method 1 lockout usage could be that an operator wants read access to all pages while allowing read/write access to the Home Page and the Lockout Menu only. To setup this scenario follow the steps below:

- 1. From the Home Page, press and hold the Infinity Key and the Advance Key for approximately six seconds. *EUSE* will appear in the upper display and *FEEY* will appear in the lower display.
- 2. Press the Up Key until Loc appears in the upper display and Fcty will appear in the lower display.
- 3. Press the Advance Key

 until Read Lock rtal appears in the bottom display and change it to 5.
- 4. Press the Advance Key

 until Set Lock 51 of appears in the bottom display and change it to

 1.

Although the Factory Page is always visible, some menus within it can be restricted.

Lockout Security 5LoE and rLoE									
Factory Page Menus									
Menus	Security Level								
	0	1	2	3	4	5			
Custom Menu	N	N	N	N	N	Υ			
Lockout Menu*	Υ	Υ	Υ	Υ	Υ	Υ			
Diagnostic Menu**	N	Υ	Υ	Υ	Υ	Υ			
Calibration Menu	N	N	N	N	N	Υ			

- * Using lockout Method 1 with 5Lal set to 0, all writable parameters within the control will be inhibited (not writable) with two exceptions, 5Lal and rlal. As shown below, both of these parameters can always be seen and modified.
- ** Diagnostic Menu and all associated prompts are always visible and never writable

Lockout Security 54 of and real Factory Page Menu Parameters									
Parameters	Security Level								
	0	1	2	3	4	5			
Lo C.o	N	Υ	Υ	Υ	Υ	Υ			
PRS.E	N	Υ	Υ	Υ	Υ	Υ			
rLoE	Υ	Υ	Υ	Υ	Υ	Υ			
5LoC	Υ	Υ	Υ	Υ	Υ	Υ			

Note:

Using Method 1 Lockout all settings can be modified by anyone who knows how to find their way to the $5L_0E$ and rL_0E parameters.

Using Lockout Method 2 (Password Enable)

It is sometimes desirable to apply a higher level of security to the control where a password would be required to access the control. If Password Enabled PRS.E in the Factory Page under the Loc Menu is set to on, an overriding Password Security will be in effect. Without the appropriate password, specified menus will remain inaccessible. Page and Menu access is defined in the Locked Access Level Loc.L prompt. On the other hand, a User with a password would have visibility restricted by the Read Lockout Security rloc. As an example, with Password Enabled and the Locked Access Level Loc.L set to 1 and rloc is set to 3, the available Pages for a User without a password would be limited to the Home and Factory Pages (locked level 1). If the User password is entered all pages would be accessible with the exception of the Setup Page as defined by level 3 access.

How to Enable Password Security

Follow the steps below:

1. From the Home Page, press and hold the Infinity Key and the Advance Key for approximately six seconds. Euse will appear in the upper display and FEEY will appear in the lower display.

- 2. Press the Up Key until Loc appears in the upper display and Fcty will appear in the lower display.
- 3. Press the Advance Key
 until Password Enable PRSE appears in the bottom display and change it to 5.
- 4. Press the Up Key to turn it on. Once on, four new prompts will appear:
 - a. Locked Access Level Lock, (1 to 5) corresponding to the lockout table above.
 - b. Rolling Password roll, will change the Customer Code every time power is cycled.
 - c. User Password PRS., which is needed for a User to acquire access to the control.
 - d. Administrator Password *PR5.R*, which is needed to acquire administrative access to the control.

The Administrator can either change the User and or the Administrator password or leave them in the default state. Once Password Security is enabled they will no longer be visible to anyone other than the Administrator. In other words the Lock Menu Lock is not available to a User. As can be seen in the formula that follows either the User or Administrator will need to know what those passwords are to acquire a higher level of access to the control. Back out of this menu by pushing the Infinity Key . Once out of the menu, the Password Security will be enabled.

How to Acquire Access to the Control

To acquire access to any inaccessible Pages or Menus, go to the Factory Page and enter the ULo C menu. Once there follow the steps below:

Note:

If Password Security (Password Enabled PRSE is On) is enabled the two prompts mentioned below in the first step will not be visible. If the password is unknown, call the individual or company that originally setup the control.

- 1. Acquire either the User Password PRS. or the Administrator Password PRS.R.
- 2. Press the Advance \odot key one time where the Code $\square \square dE$ prompt will be visible.

Note:

- a. If the Rolling Password is off, press the Advance Key ⑤ one more time where the Password ₱₱₱55 prompt will be displayed. Proceed to either step 7a or 8a. Pushing the Up or Down ☑ arrow keys enter either the User or Administrator Password. Once entered, press and hold the Infinity ⓒ key for two seconds to return to the Home Page.
- b. If the Rolling Password roll was turned on proceed on through steps 3 9.
- 3. Assuming the Code <code>[adE]</code> prompt (Public Key) is still visible on the face of the control simply push the Advance Key ③ to proceed to the Password <code>PR55</code> prompt. If not, find your way back to the Factory Page as described above.
- 4. Execute the calculation defined below (7b or 8b) for either the User or Administrator.
- 5. Enter the result of the calculation in the upper display play by using the Up ◆ and Down ◆ arrow keys or use EZ-ZONE Configurator Software.
- 6. Exit the Factory Page by pressing and holding the Infinity Key of for two seconds.

Formulas used by the User and the Administrator to calculate the Password follows:

Passwords equal:

7. User

- a. If Rolling Password Fall is Off, Password PASS equals User Password PASU.
- b. If Rolling Password roll is On, Password PR55 equals: (PR5. x code) Mod 929 + 70

8. Administrator

- a. If Rolling Password Foll is Off, Password PRSS equals User Password PRSR.
- b. If Rolling Password roll is On, Password PR55 equals: (PR5.R x code) Mod 997 + 1000

Differences Between a User Without Password, User With Password and Administrator

- User without a password is restricted by the Locked Access Level Locked.
- A User with a password is restricted by the Read Lockout Security Lo E never having access to the Lock Menu Lo E.
- An Administrator is restricted according to the Read Lockout Security -Lock however, the Administrator has access to the Lock Menu where the Read Lockout can be changed.

Modbus - Using Programmable Memory Blocks

When using the Modbus RTU or Modbus TCP protocols, the PM control features a block of addresses that can be configured by the user to provide direct access to a list of 40 user configured parameters. This allows the user easy access to this customized list by reading from or writing to a contiguous block of registers.

To acquire a better understanding of the tables found in the back of this manual (See Appendix: (Modbus Programmable Memory Blocks) please read through the text below which defines the column headers used.

Assembly Definition Addresses

- Fixed addresses used to define the parameter that will be stored in the "Working Addresses", which may also be referred to as a pointer. The value stored in these addresses will reflect (point to) the Modbus address of a parameter within the PM control.

Assembly Working Addresses

- Fixed addresses directly related to their associated "Assembly Definition Addresses" (i.e., Assembly Working Addresses 200 & 201 will assume the parameter pointed to by Assembly Definition Addresses 40 & 41).

When the Modbus address of a target parameter is stored in an "Assembly Definition Address" its corresponding working address will return that parameter's actual value. If it's a writable parameter, writing to its working register will change the parameter's actual value. As an example, Modbus register 360 represents the Analog Input Value (See Operations Page, Analog Input Menu). If the value 360 is loaded into Assembly Definition Address 90 and value 361 is loaded into Assembly Definition Address 91, the value sensed by Analog Input 1 will also be stored in Modbus registers 250 and 251. Notice that by default this parameter is also stored in working registers 240 and 241 as well.

Note:

When modifying the Modbus Assembly registers, single register writes (function 06) are not allowed. Multiple register writes (function 16) must be used to modify the assembly.

The table identified as "Assembly Definition Addresses and Assembly Working Addresses" (see Appendix: Modbus Programmable Memory Blocks) reflects the assemblies and their associated addresses.

CIP - Communications Capabilities

With the introduction of the Common Industrial Protocol (CIP) a user can now collect data, configure a device and control industrial devices. CIP is an open protocol at the application layer fully managed by the Open DeviceNet Vendors Association (ODVA, http://www.odva.org). Being that this is an open protocol there are many independent vendors offering a wide array of devices to the end user. CIP provides the ability to communicate utilizing both implicit messaging (real-time I/O messaging), and explicit messaging (information/configuration messaging). For implicit communications using a PLC, simply configure the PM assembly size into the I/O structure of the PLC (See: CIP Implicit Assembly Structures). The assembly structures can also be changed by the user. Explicit communications requires the use of specific addressing information. DeviceNet requires that the node address be specified where EtherNet/IP requires just the Class, Instance and Attribute.

- Node address or MAC ID (0 63, DeviceNet only)
- Class ID (1 to 255)
- Instance ID (0 to 255)
- Attribute ID (1 to 255)

EtherNet/IP and DeviceNet are both based on CIP and use the same addressing scheme. In the following menu pages notice the column header identified as CIP. There you will find the Class, Instance and Attribute in hexadecimal, (decimal in parenthesis) which makes up the addressing for both protocols. The Watlow implementation of CIP does not support connected explicit messages but fully supports unconnected explicit messaging.

Rockwell Automation (RA) developed the DF1 serial protocol within the framework of the PC-CC application protocol. With the introduction of CIP, the PCCC protocol was encapsulated within it to enable continued communication over Ethernet to the legacy RA programmable controllers, e.g., SLC, Micrologic and PLC-5 controllers equipped with Ethernet capabilities. The Watlow implementation of CIP also supports the PCCC protocol.

EtherNet/IP (Industrial Protocol) is a network communication standard capable of handling large amounts of data at speeds of 10 Mbps or 100 Mbps, and at up to 1,500 bytes per packet. It makes use of standard off-the-shelf Ethernet chip sets and the currently installed physical media (hardware connections). DeviceNet was the first field bus offering of the ODVA group and has been around for many years. DeviceNet can communicate at 125, 250 and 500 kilobytes per second with a maximum limitation of 64 nodes (0 to 63) on the network.

Note:

If the control is brought back to the factory defaults (See Appendix: CIP Implicit Assembly Structures) the user configured assemblies will be overwritten.

Note:

The maximum number of implicit input/output members using *DeviceNet* is 200. When using EtherNet/IP the maximum is 100.

CIP Implicit Assemblies

Communications using CIP (EtherNet/IP and DeviceNet) can be accomplished with any PM Integrated control equipped with either DeviceNet or EtherNet/IP communications cards. As was already mentioned, reading or writing when using CIP can be accomplished via explicit and or implicit communications. Explicit communications are usually executed via a message instruction within the PLC but there are other ways to do this as well outside of the focus of this document.

Implicit communications is also commonly referred to as polled communications. When using implicit communications there is an I/O assembly that would be read or written to. The default assemblies and the assembly size is embedded into the firmware of the PM control. Watlow refers to these assemblies as the T to O (Target to Originator) and the O to T (Originator to Target) assemblies where the Target is always the EZ-ZONE PM controller and the Originator is the PLC or master on the network. The size of the O to T assembly is initially set to 40 (32-bit) members where the T to O assembly consists of 40 (32-bit) members. All assembly members are user configurable with the exception of the first T to O member. The first member of the T to O assembly is called the Device Status, it is unique and cannot be changed. If the module has been properly configured when viewing this 32-bit member in binary format bits 12 and 16 should always be set to 1 where all of the other bits should be 0. All other members that follow Device Status are user configurable. The Appendix of this User's Guide contains the PM implicit assemblies (See Appendix: CIP Implicit Assembly Structures).

Compact Assembly Class

Along with the standard implicit assembly where each module parameter (member) occupies one 32-bit assembly location, there is also a Compact Class assembly. The need for the Compact Class assembly members became apparent as the number of member instances grew with the EZ-ZONE family of controls. Because there is a limited number of implicit assembly members (40 input, 40 output), the Compact Class enables the user to modify the standard assembly offering to their liking while also achieving much better utilization of each bit within the 32-bit member. As an example, if a standard Implicit Assembly member were configured to monitor Alarm State 1, the entire 32-bit member would be consumed where just 7 bits out of the 32 represent: Startup (88), None (61), Blocked (12), Alarm Low (8), Alarm High (7) or Error (28). With Compact Class assembly member 12 (identified in this document as "12 A, Alarm Read") in use, the alarm states of all 4 alarms can be placed in one 32-bit assembly member using just 2 bits for each state. Bits 0 and 1 would represent Alarm State 1, bits 2 and 3 Alarm State 2, etc... Each pair of 2 bits can represent the following states: 00 = None, 01 = Alarm Low, 10 = Alarm High and 11 = Other. There is a variety of predefined Compact Class members that can be used (See Appendix: Compact Class Assembly Structure) to modify the default implicit assemblies.

Note:

As is the case with any available parameter within the PM control, the Compact Class members can also be read or written to individually via an explicit message as well.

Modifying Implicit Assembly Members

To change any given member of either assembly (T to O or O to T) simply write the new class, instance and attribute (CIA) to the member location of choice. As an example, if it were desired to change the 14th member of the T to O assembly from the default parameter (Cool Power) to the Compact Class 12th member (See Appendix: Compact Class Assembly Structure) write the value of 0x71, 0x01 and 0x0C (Class, Instance and Attribute respectively) to 0x77,

0x02 and 0x0D. Once the change is executed, reading this member location (as was discussed above) will return the Alarm States (1-4) to paired bits 0 through 7 where 00 = None, 01 = Alarm Low, 10 = Alarm High and 11 = Other. The CIP communications instance will always be instance 2.

Profibus DP - (Decentralized Peripherals)

This protocol is typically used to operate sensors and actuators via a centralized controller within industrialized production topologies. Data rates up to 12 Mbit/s on twisted pair cables and/or fiber optics are possible. This protocol is available in three functionally graded version; DP-V0, DP-V1 and DP-V2. It should be noted that Watlow products utilizing this protocol support DP-V0 and DP-V1 only.

DP-VO - provides the basic functionality of DP, including cyclic data exchange, station, module and channel specific diagnostics and four different interrupt types for diagnostics and process interrupts.

Cyclic Data refers to input/output data that is pre-configured to pass from the Profibus-DP Class 1 Master and the Slave at a known rate. Cyclic data is expected on both the sender and the receiver end of the message.

Note:

To use DP-V0 (cyclic data transfer) first configure and then register the General Station Description (GSD) file. Watlow provides a software tool allowing for total customization of the data to be read and or written to. Acquire this software tool (Profibus GSD Editor) via the CD that shipped with the product or, as an alternative, point your browser to: http://www.watlow.com/en/resources-and-support/Technical-Library/Software-and-Demos and navigate to the bottom of the page and click on "Software and Demos" to download the software.

Using the GSD Editor a user can configure up to a maximum of 244 I/O bytes that can be read or written to from Zone 1 through 16. DP-V1 - contains enhancements geared towards process automation, in particular acyclic data communication for parameter assignment, operation, visualization and interrupt control of intelligent field devices, in conjunction with cyclic user data communication.

Acyclic Data is a message that can be sent and or received at any time where they typically have a lower priority then cyclic messages. This type of messaging is typically used for the purpose of configuration or performing some sort of a diagnostic function.

Software Configuration

Using EZ-ZONE Configurator Software

To enable a user to configure the PM control using a personal computer (PC), Watlow has provided free software for your use. If you have not yet obtained a copy of this software insert the CD (Controller Support Tools) into your CD drive and install the software. Alternatively, if you are viewing this document electronically and have a connection to the Internet simply click on the link below and download the software from the Watlow web site free of charge.

http://www.watlow.com/en/resources-and-support/Technical-Library/Software-and-Demos

Once the software is installed double click on the EZ-ZONE Configurator icon placed on your desktop during the installation process. If you cannot find the icon follow the steps below to run the software:

- 1. Move your mouse to the "Start" button
- 2. Place the mouse over "All Programs"
- 3. Navigate to the "Watlow" folder and then the sub-folder "EZ-ZONE Configurator"
- 4. Click on EZ-ZONE Configurator to run.

The first screen that will appear is shown below.

If the PC is already physically connected to the EZ-ZONE PM control click the next button to go on-line.

Note:

When establishing communications from PC to the EZ-ZONE PM controller, an interface converter will be required. The Standard Bus network uses EIA-485 as the interface. Most PCs today would require a USB to EIA-485 converter. However, some PCs may still be equipped with EIA-232 ports, therefore an EIA-232 to EIA-485 converter would be required.

As can be seen in the above screen shot the software provides the user with the option of downloading a previously saved configuration as well as the ability to create a configuration off-line to download later. The screen shots that follow will take the user on-line.

After clicking the next button above it is necessary to define the communications port that

will be used on the PC as shown to the right. Clicking on the drop down will allow the user to select the appropriate communications port. This will be the port assigned to the EIA-485 to USB converter when it was connected to the PC. The "Advanced" button allows the user to determine how many devices to look for on the network (1 to 17).

After clicking on the "Next" button, the software will scan the network for the zone addresses specified while showing the progress made (as shown in the graphic below. When complete the software will display all of the available devices found on the network as shown below.

Serial Number

23251

16539

316026

Searching Network for Devices

Model Number

PM9L3CJ-AAAAAAA

PM4R3CJ-1AFAAAA

PM6C1FK-AAFJAFK

Stop Scan

When the EZ-ZONE device that you want to configure appears in

Matlow EZ-ZONE® CONFIGURATOR

the list select it, and click Next.

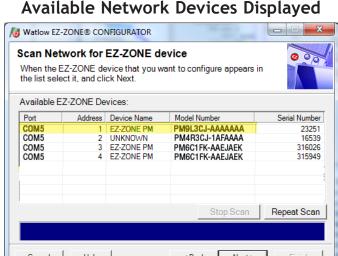
Available EZ-ZONE Devices:

Help

COM5

COM5

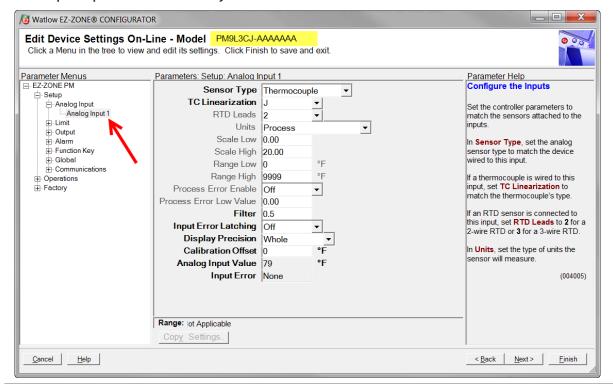
Scan Network for EZ-ZONE device


Address Device Name

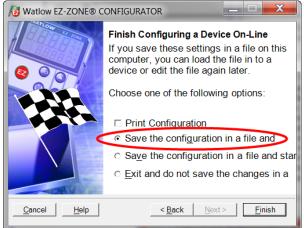
EZ-ZONE PM

EZ-ZONE PM

EZ-ZONE PM


UNKNOWN

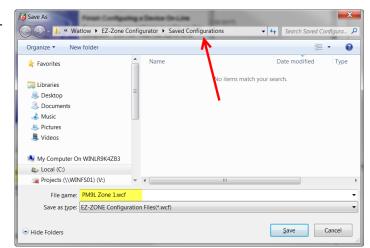
Help Cancel


The PM9L is shown highlighted above to bring greater clarity to the controller in focus. Any EZ-ZONE device on the network will appear in this window and would be available for the purpose of configuration or monitoring; simply click on the control of choice. After doing so, the screen below will appear. In the screen shot below notice that the device part number is clearly displayed at the top of the page (yellow highlight added for emphasis). When multiple EZ-ZONE devices are on the network it is important that the part number be noted prior to configuring so as to avoid making unwanted configuration changes to another controller. Looking closely at the left hand column (Parameter Menus) notice that it displays all of the available menus and associated parameters within the controller. The menu structure as laid out within this software follows:

- Setup - Operations - Factory

Navigating from one menu to the next is easy and clearly visible. Simply slide the scroll bar up or down to display the menu and parameter of choice. If there is a need to bring greater focus and clarity to the parameters of interest simply click on the negative symbol next to any of the Menu items. As an example, if it is desired to work within the Operations page click the negative sign next to Setup where the Setup Page will then collapse. Now click the plus

sign next to Operations to find the menu items of choice without viewing unwanted menus and parameters. Once the focus is brought to an individual parameter (single click of mouse) as is the case for Analog Input 1 in the left column; all that can be setup related to that parameter will appear in the center column. The grayed out fields in the center column simply mean that this does not apply for the type of sensor selected. As an example, notice that when a thermocouple is selected, RTD Leads does not apply and is therefore grayed out. To speed up the process of configuration notice that at the bottom of the center column there is



an option to copy settings. If Alarms 1 through 4 are to be configured the same, simply click on "Copy Settings" where a copy dialog box will appear allowing for quick duplication of all settings. Notice too, that by clicking on any of those items in the center column that context sensitive help will appear for that particular item in the right hand column. Lastly, when the configuration is complete, click the "Finish" button at the bottom right of the graphic on the previous page. The screen that follows this action can be seen above.

Although the PM controller now contains the configuration (because the previous discussion focused on doing the configuration on-line) it is suggested that after the configuration process is completed that the user save this file on the PC for future use. If for some reason someone inadvertently changed a setting without understanding the impact, it would be easy and perhaps faster to download a saved configuration back to the control versus trying to figure out what was changed. Of course, there is an option to exit without saving a copy to the local hard drive. After selecting Save above, click the "Finish" button once again. The screen below will than appear. When saving the configuration, note the location where the file will be placed (saved in) and enter the file name (File name) as well. The default path for saved files

follows: Users\"Username"\My Documents\ Watlow\EZ-Zone Configurator\Saved Configurations

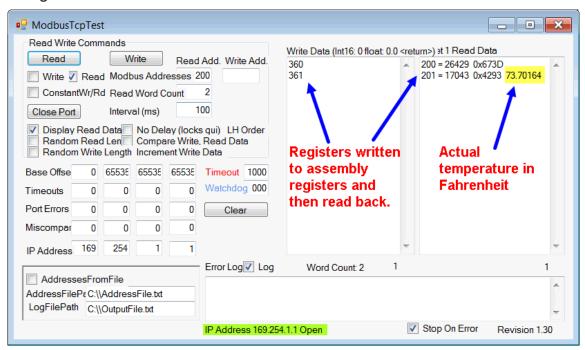
The user can save the file to any folder of choice.

Chapter 9: Appendix

Troubleshooting Alarms, Errors and Control Issues

Indication	Description	Possible Cause(s)	Corrective Action
Alarm won't clear or reset	Alarm will not clear or reset with keypad or digital input	Latching is active	Reset alarm when process is within range or disable latching
		 Alarm set to incorrect output 	Set output to correct alarm source instance
		• Alarm is set to incorrect source	Set alarm source to cor- rect input instance
		 Sensor input is out of alarm set point range 	Correct cause of sensor input out of alarm range
		 Alarm set point is incorrect 	Set alarm set point to correct trip point
		 Alarm is set to incorrect type 	 Set alarm to correct type: process, deviation or power
		 Digital input function is incorrect 	Set digital input function and source instance
Alarm won't occur	Alarm will not activate output	Silencing is active	Disable silencing, if required
		Blocking is active	Disable blocking, if required
		 Alarm is set to incorrect output 	Set output to correct alarm source instance
		 Alarm is set to incorrect source 	Set alarm source to cor- rect input instance
		 Alarm set point is incorrect 	Set alarm set point to correct trip point
		Alarm is set to incorrect type	 Set alarm to correct type: process, deviation or power
Alarm Error AL.E I	Alarm state cannot be determined due	 Sensor improperly wired or open 	Correct wiring or replace sensor
AL.E 2 AL.E 3	to lack of sensor input	 Incorrect setting of sensor type 	Match setting to sensor used
AL.E 4		Calibration corrupt	Check calibration of con- troller

Indication	Description	Possible Cause(s)	Corrective Action
Alarm Low AL.L I AL.L 2 AL.L 3 AL.L 4	Sensor input below low alarm set point	 Temperature is less than alarm set point Alarm is set to latching and an alarm occurred in the past 	Check cause of under temperatureClear latched alarm
		 Incorrect alarm set point Incorrect alarm source 	Establish correct alarm set pointSet alarm source to proper setting
Alarm High AL.h I AL.h Z AL.h 3 AL.h 4	Sensor input above high alarm set point	 Alarm is set to latching and an alarm occurred in the past Incorrect alarm set point 	 Check cause of over temperature Clear latched alarm Establish correct alarm set point
Error Input	Sensor does not	 Incorrect alarm source Sensor improperly wired 	Set alarm source to proper settingCorrect wiring or replace
Er. i I	provide a valid sig- nal to controller	or open Incorrect setting of sensor type Calibration corrupt	sensorMatch setting to sensor usedCheck calibration of controller
Ambient Error	Sensor does not provide a valid signal to controller	 Ambient error - cold junction circuitry not working 	Return to factory for re- pair
Limit won't clear or reset	Limit will not clear or reset with key- pad or digital input	 Sensor input is out of limit set point range Limit set point is incorrect Digital input function is incorrect 	 Correct cause of sensor input out of limit range Set limit set point to correct trip point Set digital input function and source instance
Limit Error	Limit state cannot be determined due to lack of sensor in- put, limit will trip	 Sensor improperly wired or open Incorrect setting of sensor type Calibration corrupt 	 Correct wiring or replace sensor Match setting to sensor used Check calibration of con- troller
Limit Low	Sensor input below low limit set point	 Temperature is less than limit set point Limit outputs latch and require reset Incorrect alarm set point 	 Check cause of under temperature Clear limit Establish correct limit set point

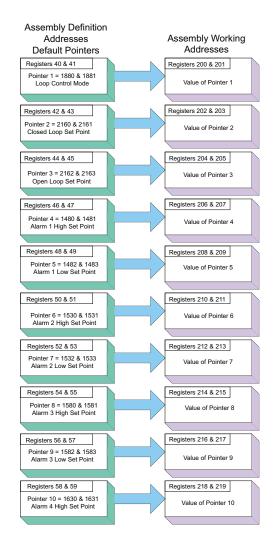

Indication	Description	Possible Cause(s)	Corrective Action
Limit High	Sensor input above high limit set point	 Temperature is greater than limit set point Limit outputs latch and require reset Incorrect alarm set point 	 Check cause of over temperature Clear limit Establish correct limit set point
No Display	No display indica- tion or LED illumi- nation	 Power to controller is off Fuse open Breaker tripped Safety interlock switch open Separate system limit 	 Turn on power Replace fuse Reset breaker Close interlock switch Reset limit
		control activatedWiring errorIncorrect voltage to controller	Correct wiring issueApply correct voltage, check part number
No Serial Communication	Cannot establish serial communications with the controller		 Set unique addresses on network Match protocol between devices Match baud rate between devices Match parity between devices Correct wiring issue Check settings or replace converter Set correct communica-

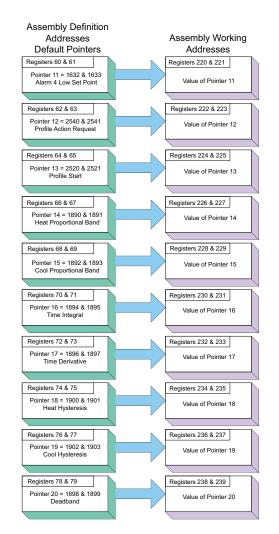
Indication	Description	Possible Cause(s)	Corrective Action
Temperature runway	Process value continues to increase or decrease past set point.	rectly programmed Thermocouple reverse wired	 Verify output function is correct (heat or cool) Correct sensor wiring (red wire negative) Verify and correct wiring
			Replace heaterReplace or repair power controller
		Controller output defective	• Replace or repair control- ler
Device Error	Controller displays internal malfunc-	Controller defective	 Replace or repair control- ler
rEEn	tion message at power up.	Sensor input over driven	 Check sensors for ground loops, reverse wiring or out of range values.
Menus inac- cessible	Unable to access SEL, aPEr, FELY or ProF menus or particular prompts in Home Page	Security set to incorrect level	• Check Lot settings in Factory Page and enter appropriate password in ULot setting in Factory Page
		Digital input set to lock- out keypad	 Change state of digital input
		Custom parameters in- correct	 Change custom parameters in Factory Page
EZ-Key/s do not work	EZ-Key/s do not activate required	EZ-Key function incorrect	 Verify EZ-Key function in the Setup Menu
	function	EZ-Key function instance not correct	 Correct and change the function instance if not correct
		Keypad malfunction	 Replace or repair control- ler
Displayed value to low	Value to low to be displayed in 4 digit LED display <-1999	Incorrect setup	 Check scaling of source data
Displayed value to high	Value to high to be displayed in 4 digit LED display >9999	Incorrect setup	 Check scaling of source data

Detection of and	d Rules Around Abnormal Sensor Conditions									
Inputs	Detection of Abnormal Conditions									
	Thermocouple									
Shorted	No direct detection, Open loop firmware detection.									
Open	Yes, Parasitic pull-up									
Reversed	Yes, firmware detection									
	Current Source									
Shorted	Range limiting only									
Open	Range limiting only									
Reversed	Range limiting only									
Voltage Source										
Open	Range limiting only									
Shorted	Range limiting only									
Reversed Range limiting only										
RTD										
S1 open	Yes, pulled up.									
S2 open	Not implemented.									
S3 open	Yes, pulled up.									
S1 short to S2	Yes, pulled up									
S1 short to S3	Yes, pulled down to under range.									
S2 shorted to S3	Not implemented, Possible, monitor S2 voltage.									
S1 and S2 open	Yes, pulled down to under range.									
S1 and S3 open	Yes, S1 pulled up.									
S2 and S3 open	Yes pulled up.									
	Thermistor									
S1 open	Yes, pulled up to sensor over range.									
S3 open	Yes, pulled up to sensor over range.									
S1 short to S3	Yes, pulled down to sensor under range.									
S1 and S3 open	Yes, S1 pulled up to sensor over range.									

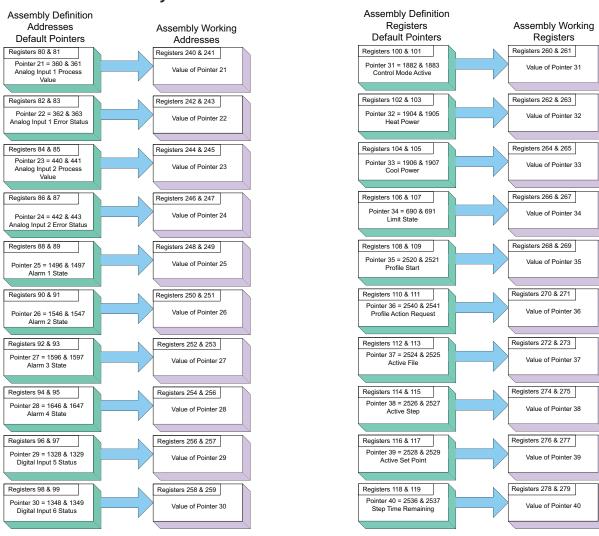
Modbus - Programmable Memory Blocks

The Modbus assembly or programmable memory blocks consists of 40 pointers to the parameters of your choosing starting at Modbus register 40 (shown on the following page). The pointers are 32-bits long and are stored in two sequential registers. As an example, if it is desired to move an alias to the Analog Input of the PM (register 360) into pointer registers 40 and 41, a single multi-write command (0x10 function) would be used writing 360 into register 40 and 361 into register 41.


Once the parameters of choice have been defined and written to the specified pointer registers, the working registers will then represent the parameters written. In the example above, the 32-bit floating point analog input (360 and 361) was first written to registers 40 and 41 which in turn defines working registers 200 and 201 as Analog Input 1. As can be seen in the far right-hand column in the graphic above, reading back registers 200 and 201 the temperature, as detected by the first analog input is displayed.


The screen shot above was taken from a program that can be found on the Watlow Support Tools DVD (shipped with the product) as well as on the Watlow website. On the DVD, it can be found under "Utility Tools" and is identified as "Modbus TCP Diagnostic Program for EZ-ZONE PM, RM and ST". A similar program can be found here as well for Modbus RTU. If it is easier to go to the web to acquire this software, click on the link below and type "modbus" in the search field where both versions can be found and downloaded. http://www.watlow.com/en/resources-and-support/Technical-Library/Software-and-Demos

Modbus - Programmable Memory Blocks


Assembly Definition Addresses and Assembly Working Addresses

Assembly Definition Addresses	Assembly Working Addresses	Assembly Definition Addresses	Assembly Working Addresses
40 & 41	200 & 201	80 & 81	240 & 241
42 & 43	202 & 203	82 & 83	242 & 243
44 & 45	204 & 205	84 & 85	244 & 245
46 & 47	206 & 207	86 & 87	246 & 247
48 & 49	208 & 209	88 & 89	248 & 249
50 & 51	210 & 211	90 & 91	250 & 251
52 & 53	212 & 213	92 & 93	252 & 253
54 & 55	214 & 215	94 & 95	254 & 255
56 & 57	216 & 217	96 & 97	256 & 257
58 & 59	218 & 219	98 & 99	256 & 259
60 & 61	220 & 221	100 & 101	260 & 261
62 & 63	222 & 223	102 & 103	262 & 263
64 & 65	224 & 225	104 & 105	264 & 265
66 & 67	226 & 227	106 & 107	266 & 267
68 & 69	228 & 229	108 & 109	268 & 269
70 & 71	230 & 231	110 & 111	270 & 271
72 & 73	232 & 233	112 & 113	272 & 273
74 & 75	234 & 235	114 & 115	274 & 275
76 & 77	236 & 237	116 & 117	276 & 277
78 & 79	238 & 239	118 & 119	278 & 279

Modbus Default Assembly Structure 80-119

CIP Implicit Assembly Structures

			CIP Implicit Assembly		
		Orig	ginator (Master) to Target (PML)		
Assembly Members	Assembly Class, Instance, Attribute	ST Data Type	Parameter	Parameter Class, Instance, Attribute	PLC Data Type
1	0x77, 0x01, 0x01	DINT	Control Loop 1, User Control Mode	0x97, 0x01, 0x01	DINT
2	0x77, 0x01, 0x02	DINT	Closed Loop Set Point	0x6B, 0x01, 0x01	REAL
3	0x77, 0x01, 0x03	DINT	Open Loop Set Point	0x6B, 0x01, 0x02	REAL
4	0x77, 0x01, 0x04	DINT	Alarm 1 - Alarm High Set Point	0x6D, 0x01, 0x01	REAL
5	0x77, 0x01, 0x05	DINT	Alarm 1 - Alarm Low Set Point	0x6D, 0x01, 0x02	REAL
6	0x77, 0x01, 0x06	DINT	Alarm 2 - Alarm High Set Point	0x6D, 0x02, 0x01	REAL
7	0x77, 0x01, 0x07	DINT	Alarm 2 - Alarm Low Set Point	0x6D, 0x02, 0x02	REAL
8	0x77, 0x01, 0x08	DINT	Alarm 3 - Alarm High Set Point	0x6D, 0x03, 0x01	REAL
9	0x77, 0x01, 0x09	DINT	Alarm 3 - Alarm Low Set Point	0x6D, 0x03, 0x02	REAL
10	0x77, 0x01, 0x0A	DINT	Alarm 4 - Alarm High Set Point	0x6D, 0x04, 0x01	REAL
11	0x77, 0x01, 0x0B	DINT	Alarm 4 - Alarm Low Set Point	0x6D, 0x04, 0x02	REAL
12	0x77, 0x01, 0x0C	DINT	Profile Action Request	0x7A, 0x01, 0x0B	DINT
13	0x77, 0x01, 0x0D	DINT	Profile Start	0x7A, 0x01, 0x01	DINT
14	0x77, 0x01, 0x0E	DINT	Heat Proportional Band	0x97, 0x01, 0x06	REAL
15	0x77, 0x01, 0x0F	DINT	Cool Proportional Band	0x97, 0x01, 0x07	REAL
16	0x77, 0x01, 0x10	DINT	Time Integral	0x97, 0x01, 0x08	REAL
17	0x77, 0x01, 0x11	DINT	Time Derivative	0x97, 0x01, 0x09	REAL
18	0x77, 0x01, 0x12	DINT	Heat Hysteresis	0x97, 0x01, 0x0B	REAL
19	0x77, 0x01, 0x13	DINT	Cool Hysteresis	0x97, 0x01, 0x0C	REAL
20	0x77, 0x01, 0x14	DINT	Dead Band	0x97, 0x01, 0x0A	REAL
21	0x77, 0x02, 0x15	DINT	None Specified		
22	0x77, 0x02, 0x16	DINT	None Specified		
23	0x77, 0x02, 0x17	DINT	None Specified		
24	0x77, 0x02, 0x18	DINT	None Specified		
25	0x77, 0x02, 0x19	DINT	None Specified		
26	0x77, 0x02, 0x1A	DINT	None Specified		
27	0x77, 0x02, 0x1B	DINT	None Specified		
28	0x77, 0x02, 0x1C	DINT	None Specified		
29	0x77, 0x02, 0x1D	DINT	None Specified		
30	0x77, 0x02, 0x1E	DINT	None Specified		
31	0x77, 0x02, 0x1F	DINT	None Specified		
32	0x77, 0x02, 0x20	DINT	None Specified		
33	0x77, 0x02, 0x21	DINT	None Specified		
34	0x77, 0x02, 0x22	DINT	None Specified		
35	0x77, 0x02, 0x23	DINT	None Specified		
36	0x77, 0x02, 0x24	DINT	None Specified		
37	0x77, 0x02, 0x25	DINT	None Specified		
38	0x77, 0x02, 0x26	DINT	None Specified		
39	0x77, 0x02, 0x27	DINT	None Specified		
40	0x77, 0x02, 0x28	DINT	None Specified		

Note:

PM revision 15 and above firmware allows for 40 implicit members. Revisions below 15, allow for a maximum of 20.

	CIP Implicit Assembly													
		Tar	get (PML) to Originator (Master)											
Assembly Members	Assembly Class, Instance, Attribute	ST Data Type	Parameter	Parameter Class, Instance, Attribute	PLC Data Type									
	Cannot be changed	Binary	Device Status	None	BIN									
1	0x77, 0x02, 0x01	DINT	Analog Input 1, Analog Input Value	0x68, 0x01, 0x01	REAL									
2	0x77, 0x02, 0x02	DINT	Analog Input 1, Input Error	0x68, 0x01. 0x02	REAL									
3	0x77, 0x02, 0x03	DINT	Analog Input 2, Analog Input Value	0x68, 0x02, 0x01	REAL									
4	0x77, 0x02, 0x04	DINT	Analog Input 2, Input Error	0x68, 0x02, 0x02	REAL									
5	0x77, 0x02, 0x05	DINT	Alarm 1, Alarm State	0x6D, 0x01, 0x09	DINT									
6	0x77, 0x02, 0x06	DINT	Alarm 2, Alarm State	0x6D, 0x02, 0x09	DINT									
7	0x77, 0x02, 0x07	DINT	Alarm 3, Alarm State	0x6D, 0x03, 0x09	DINT									
8	0x77, 0x02, 0x08	DINT	Alarm 4, Alarm State	0x6D, 0x04, 0x09	DINT									
9	0x77, 0x02, 0x09	DINT	Event Status 1	0x6E, 0x01, 0x05	DINT									
10	0x77, 0x02, 0x0A	DINT	Event Status 2	0x6E, 0x02, 0x05	DINT									
11	0x77, 0x02, 0x0B	DINT	Control Mode Active	0x97, 0x01, 0x02	DINT									
12	0x77, 0x02, 0x0C	DINT	Heat Power	0x97, 0x01, 0x0D	REAL									
13	0x77, 0x02, 0x0D	DINT	Cool Power	0x97, 0x01, 0x0E	REAL									
14	0x77, 0x02, 0x0E	DINT	Limit State	0x70, 0x01, 0x06	DINT									
15	0x77, 0x02, 0x0F	DINT	Profile Start	0x7A, 0x01, 0x01	DINT									
16	0x77, 0x02, 0x10	DINT	Profile Action Request	0x7A, 0x01, 0x0B	DINT									
17	0x77, 0x02, 0x11	DINT	Current Profile	0x7A, 0x01, 0x03	DINT									
18	0x77, 0x02, 0x12	DINT	Current Step	0x7A, 0x01, 0x04	DINT									
19	0x77, 0x02, 0x13	DINT	Active Set Point	0x7A, 0x01, 0x05	REAL									
20	0x77, 0x02, 0x14	DINT	Step Time Remaining	0x7A, 0x01, 0x09	DINT									
21	0x77, 0x02, 0x15	DINT	None Specified											
22	0x77, 0x02, 0x16	DINT	None Specified											
23	0x77, 0x02, 0x17	DINT	None Specified											
24	0x77, 0x02, 0x18	DINT	None Specified											
25	0x77, 0x02, 0x19	DINT	None Specified											
26	0x77, 0x02, 0x1A	DINT	None Specified											
27	0x77, 0x02, 0x1B	DINT	None Specified											
28	0x77, 0x02, 0x1C	DINT	None Specified											
29	0x77, 0x02, 0x1D	DINT	None Specified											
30	0x77, 0x02, 0x1E	DINT	None Specified											
31	0x77, 0x02, 0x1F	DINT	None Specified											
32	0x77, 0x02, 0x20	DINT	None Specified											
33	0x77, 0x02, 0x21	DINT	None Specified											
34	0x77, 0x02, 0x22	DINT	None Specified											
35	0x77, 0x02, 0x23	DINT	None Specified											
36	0x77, 0x02, 0x24	DINT	None Specified											
37	0x77, 0x02, 0x25	DINT	None Specified											
38	0x77, 0x02, 0x26	DINT	None Specified											
39	0x77, 0x02, 0x27	DINT	None Specified											
40	0x77, 0x02, 0x28	DINT	None Specified											

As can be seen on the previous page, the PML Implicit Assembly defaults (factory settings) to a populated assembly structure. If it is desired to modify any of the given assembly members there are many software tools available to do so. It is outside of the scope of this document to describe how to use those. What can be found in this document is the process to build the assembly structure. If viewing this document electronically simply click on the link below to read the section entitled "Modifying Implicit Assembly Members". Otherwise, turn back to the table of contents to find the above named section.

Compact Class Assembly Structure

On the next six pages, the 17 available members of the Compact Class are displayed. As an orientation to the format as displayed in this document, notice that each member begins with header identified as "Assembly" and below the header you will see the member number along with parameter information contained within. While looking at these illustrations keep in mind that each member is actually 32-bits in length. To better illustrate this information in this document, the following 6 pages present these members divided in half where the letter "A" in

the page header and assembly number represents the most significant 16-bits where the letter "B" in the title and assembly number represents the least significant 16-bits of each member. In the event that these pages are printed out and then mixed up, simply match up the page headers placing them side by side. As an example, Compact Class 1 A through 7 A should be paired with Class 1 B through 7 B, left to right.

Assembly	Class,
Assembly	Instance, Attribute
1 A	C = 0x71 (113)
Analog Input	I = 1 to 4 ` ´
Read	A = 1

For further explanation as to what the Compact Class assembly is, navigate to the section entitled "Compact Assembly Class"

Compact Class 1 A through 7 A

			Instance i														
Assembly	Class, Instance, Attribute	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
1 A Analog Input Read	C = 0x71 (113) I = 1 to 4 A = 1					Fi	Itered An	alog Inp	out Valı	ue							

Bits 16 to 31, Signed 16 bits with implied tenths precision (-32768.8 to 3276.7)

		Instance i															
Assembly	Class, Instance, Attribute	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
2 A Control Read/Write	C = 0x71 (113) I = 1 to 4 A = 2		Closed Loop Set Point														

Bits 16 to 31, Signed 16 bits with implied tenths precision (-32768.8 to 3276.7)

		Instance i + 1															
Assembly	Class, Instance, Attribute	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
3 A Control Read/Write	C = 0x71 (113) I = 1 to 4 A = 3		Closed Loop Set Point														

Bits 16 to 31, Signed 16 bits with implied tenths precision (-32768.8 to 3276.7)

								Instance	i							
Assembly	Class, Instance, Attribute	31	30 29 28 27 26 25 24 23 22 21 20 19 18 17 16													
4 A Control Read/Write	C = 0x71 (113) I = 1 to 4 A = 4						Heat F	roporti	onal Ba	and						

Bits 16 to 31, Unsigned 16 bits with implied tenths precision (0 to 6553.5)

								Instance	i								
Assembly	Class, Instance, Attribute	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
5 A Control Read/Write	C = 0x71 (113) I = 1 to 4 A = 5					Cod	ol Propor	tional E	Band (ir	nstance	e i)						

Bits 16 to 31, Unsigned 16 bits with implied tenths precision (0 to 6553.5)

								Instance	i + 1								
Assembly	Class, Instance, Attribute	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
6 A Limit Read	C = 0x71 (113) I = 1 to 4 A = 6	Limit	State	Input Error Status			An	alog In	put Val	ue							

Bits 16 to 28, Signed 16 bits whole (-4096 to 4095)
Bit 29, Analog Input Error Status (0 = None, 1 = Error)
Bits 30 and 31, Limit State (00 = None, 01 = Low Limit, 10 = Limit High, 11 = Other)

								Instance	i + 1								
Assembly	Class, Instance, Attribute	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
7 A Limit Read/Write	C = 0x71 (113) I = 1 to 4 A = 7	Spare	Limit Clear	Clear Latched Error			Ana	log Inpi	ut Valu	е							

Bits 16 to 28, Signed 13 bits whole (-4096 to 4095) Bit 29, Clear Latched Input Error (0 = Ignore, 1 = Clear) Bits 30, Limit Clear (0 = Ignore, 1 = Clear)

Compact Class 1 B through 7 B

								Inst	ance i							
Assembly	15	14	13	12	11 10 9 8 7 6 5 4 3 2 1 0											
1 B	Input Error Status	Loop Error Status	Actu Cont Mod	rol	Tune Status				Cont	rol Loop	Output P	ower				

Bits 0 to 10, Signed 10 bits with implied tenths precision (-100.0 to 100.0)

Bit 11, Loop Tuning Status (0 = Off, 1 = Anything Else)

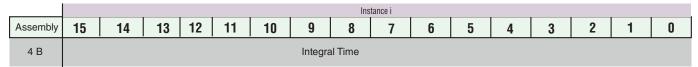
Bits 12 and 13, Actual Control Mode (00 = Off, 01 = Manual, 10 = Auto)

Bit 14, Loop Error Status (0 = None, 1 = Error)

Bit 15, Analog Input Error (0 = None, 1 = Error)

								Inst	ance i							
Assembly	15	14	13	12	12 11 10 9 8 7 0 5 4 3 2 1											
2 B	Spare	Open Loop Clear	Control	Mode	Initiate Tune				С	pen Loop	Set Poi	nt				

Bits 0 to 10, Signed 10 bits with implied tenths precision (-100.0 to 100.0)


Bit 11, Initiate Tune (0 = No, 1 = Yes)

Bits 12 and 13, Actual Control Mode (00 = Off, 01 = Manual, 10 = Auto)

Bit 14, Open Loop Clear (0 = Ignore, 1 = Clear)

								Inst	tance i							
Assembly	15	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0														
3 B						CI	osed Loc	p Set Po	int							


Bits 0 to 15, Signed 16 bits with implied tenths precision (-3276.8 to 3276.8)

Bits 0 to 15, Unsigned 16 bits whole (0 to 65535)

								Instance i								
Assembly	15														0	
5 B							Derivati	ve Time								

Bits 0 to 15, Unsigned 16 bits whole (0 to 65535)

Bits 0 to 12, Signed 13 bits whole (-4096 to 4095)

Bits 13, Analog Input Error Status (0 = None, 1 = Error)

Bit 14 and 15, Limit State (00 = None, 01 = Limit low, 10 = Limit high, 11 = Other)

								Ins	tance i							
Assembly	15	14	13	12 11 10 9 8 7 6 5 4 3 2 1 0												
7 B	Spare	Limit Clear	Clear Latched Error					Lim	it Set Poi	nt High						

Bits 0 to 12, Signed 13 bits whole (-4096 to 4095)

Bit 13, Clear Latched Input Error (0 = Ignore, 1 = Clear)

Bit 14, Limit Clear (0 = Ignore, 1 = Clear)

Compact Class 8 A through 13 A

		Instance	e i + 15	Instanc	e i + 14	Instanc	e i + 13	Instance	e i + 12	Instance	e i + 11	Instance	e i + 10	Instance	e i + 9	Instanc	e i + 8
Assembly	Class, Instance, Attribute	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
8 A Limit Read	C = 0x71 (113) I = 1 to 4 A = 8	Limit	State	Limit	State	Limit	State	Limit	State	Limit	State	Limit	State	Limit	State	Limit	State

Bits 16 to 31, Paired bits representing the state of up to 16 limits (00 = None, 01 = Limit low,, 10 = Limit High)

		Instance	i + 15	Instance	e i + 14	Instance	e i + 13	Instance	i + 12	Instance	e i + 11	Instance	e i + 10	Instance	ei+9	Instance	e i + 8
Assembly	Class, Instance, Attribute	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
9 A Limit Read/Write	C = 0x71 (113) I = 1 to 4 A = 9	Spare	Limit Clear														

Bits 16 to 31, Paired bits representing the state of up to 16 limits (00 = None, 01 = Limit low,, 10 = Limit High)

								Instance	i						
Assembly	Class, Instance, Attribute	31	Cloor										16		
10 A Limit Read/Write	C = 0x71 (113) I = 1 to 4 A = 0x0A (10)	Spare	Limit Clear	Clear Latched Error					Limit	Set Po	int Hig	h			

Bits 16 to 28, Signed 13 bits whole (-4096 to 4095) - Bit 29, Clear Latched Input Error (0 = Ignore, 1 = Clear) Bits 30, Limit Clear (0 = Ignore, 1 = Clear)

								Instance	i + 1							
Assembly	Class, Instance, Attribute	31													16	
11 A CT Read	C = 0x71 (113) I = 1 to 4 A = 0x0B (11)	Spare	Heater Error	Current Error					Cı	urrent F	RMS					

Bits 16 to 28, Unsigned 11 bits (0 to 2047)
Bit 29, Current Error (00 = None, 01 = Low, 10 = High)
Bit 30, Heater Error (00 = None, 01 = Open, 10 = Shorted)

		Instance	i + 15	Instance	e i + 14	Instance	e i + 13	Instance	i + 12	Instance	e i + 11	Instance	e i + 10	Instanc	e i + 9	Instance	e i + 8
Assembly	Class, Instance, Attribute	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
12 A Alarm Read	C = 0x71 (113) I = 1 to 4 A = 0x0C (12)	Alarm	State	Alarm	State	Alarm	State	Alarm	State	Alarm	State	Alarm	State	Alarm	State	Alarm	State

Bits 16 to 31, Paired bits reflecting the state of up to 16 alarms (00 = None, 01 = Alarm Low, 10 = Alarm High, 11 = Other)

		Instance	i + 15	Instance	e i + 14	Instance	e i + 13	Instance	e i + 12	Instance	e i + 11	Instance	e i + 10	Instanc	e i + 9	Instance	e i + 8
Assembly	Class, Instance, Attribute	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
13 A Alarm Read/Write	C = 0x71 (113) I = 1 to 4 A = 0x0D (13)	Alarm	Clear	Alarm S	Silence	Alarm	Clear	Ala Sile	irm nce	Alarm	Clear		arm ence	Alarm	Clear		arm ence

Bits 16 to 31, Paired bits reflecting the state of up to 16 alarms (0 = Ignore, 1 = Clear)

Compact Class 8 B through 13 B

	Instar	nce i + 7	Instan	ce i + 6	Instanc	ce i + 5	Instan	ce i + 4	Instanc	e i + 3	Instanc	e i + 2	Instance	e i + 1	Instar	nce i
Assembly	15	14	13	12	11	11 10		8	7	6	5	4	3	2	1	0
8 B	Limit S	state	Limit Sta	ate	Limit	State	Limit	State	Limit	State	Limit	State	Limit	State	Limit	State

Bits 0 to 15, Paired bits representing the state of up to 16 limits (00 = None, 01 = Limit low,, 10 = Limit High)

	Instar	nce i + 7	Instanc	ce i + 6	Instanc	e i + 5	Instanc	e i + 4	Instance	e i + 3	Instance	i + 2	Instance	i + 1	Instar	ice i
Assembly	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
9 B	Spare	Limit Clear	Spare	Limit Clear	Spare	Limit Clear	Spare	Limit Clear	Spare	Limit Clear	Spare	Limit Clear	Spare	Limit Clear	Spare	Limit Clear

Bits 0, 2, 4, 6, 8, 10, 12 and 14, Limit Clear for instance i to instance i (0 = Ignore, 1 = Clear)

									Instance	i						
Assembly	15	14	13	12	12 11 10 9 8 7 6 5 4 3 2 1 0											
10 B		Spare						Lim	nit Set Poi	nt Low						

Bits 0 to 12, Signed 13 bits whole (-4096 to 4095)

									Instance	i						
Assembly	15	14	13	12	1/ 11 111 4 8 / 6 6 / 2 / 1 1											
11 B	Spare	Heater Error	Current Error					(Current R	MS						

Bits 16 to 28, Unsigned 11 bits (0 to 2047)
Bit 29, Current Error (00 = None, 01 = Low, 10 = High)
Bit 30, Heater Error (00 = None, 01 = Open, 10 = Shorted)

	Instanc	e i + 7	Instance	i + 6	Instanc	e i + 5	Instance	e i + 4	Instance	e i + 3	Instance	e i + 2	Instance	i + 1	Instan	ce i
Assembly	15	14	13	12	11 10		9	8	7	6	5	4	3	2	1	0
12 B	Alarm	State	Alarm	State	Alarm	State	Alarm	State	Alarm	State	Alarm	State	Alarm	State	Alarm	State

Bits 0 to 15, Paired bits reflecting the state of up to 16 alarms (00 = None, 01 = Alarm Low, 10 = Alarm High, 11 = Other)

	Instance	i + 7	Instand	ce i + 6	Instanc	e i + 5	Instanc	e i + 4	Instance	e i + 3	Instance	e i + 2	Instance	e i + 1	Instan	ce i
Assembly	15	14	13	12	11 10		9	8	7	6	5	4	3	2	1	0
13 B	Alarm	Clear	Alarm	Silence	Alarm	n Clear	Ala Sile	rm	Alarm	Clear	Alarm	Silence	Alarm	Clear	Alarm	Silence

Bits 0 to 15, Paired bits reflecting the state of up to 16 alarms (0 = Ignore, 1 = Clear)

Compact Class 14 A through 19 A

								Instance	i								
Assembly	Class, Instance, Attribute	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
14 A Alarm Read/Write	C = 0x71 (113) I = 1 to 4 A = 0x0E (14)	Alarm Clear					Alar	m Set I	Point H	ligh							

Bits 16 to 30, Signed 15 bits with implied tenths precision (-1638.4 to 1638.3) Bit 31, Alarm Clear (0 = Ignore, 1 = Clear)

								Instance	i + 1							
Assembly	Class, Instance, Attribute	31	30	30 29 28 27 26 25 24 23 22 21 20 19 18 17 16										16		
15 A Analog Input Read	C = 0x71 (113) I = 1 to 4 A = 0x0F (15)	Input Error Status					Filtered A	Analog	Input V	alue						

Bits 16 to 30, Signed 15 bits with implied tenths precision (-1638.4 to 1638.3) Bit 31, Analog Input Error (0 = None, 1 = Error)

								Instance	i + 1								
Assembly	Class, Instance, Attribute	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
16 A Analog Input Read	C = 0x71 (113) I = 1 to 4 A = 0x10 (16)						Filtered	Analog	Input	Value							

Bits 16 to 31, Signed 16 bits with implied tenths precision (-3276.8 to 3276.8)

		Instance	i + 15	Instanc	e i + 14	Instance	e i + 13	Instance	e i + 12	Instanc	e i + 11	Instanc	e i + 10	Instanc	e i + 9	Instance	e i + 8
Assembly	Class, Instance, Attribute	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
17 A Analog Input Read	C = 0x71 (113) I = 1 to 4 A = 0x11 (17)	Spare	Input Error Status	Spare	Input Error Status	Spare	Input Error Status	Spare	Input Error Status	Spare	Input Error Status	Spare	Input Error Status	Spare	Input Error Status	Spare	Input Error Status

Bits 16, 18, 20, 22, 24, 26, 28, 30, Analog Input Error Status (0 = None, 1 = Error)

Compact Class 14 B through 17 B

		Instance i														
Assembly	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
14 B	Alarm Silence	Alarm Set Point Low														

Bits 0 to 14, Signed 15 bits with implied tenths precision (-1638.4 to 1638.3) Bit 15, Alarm Silence (0 = Ignore, 1 = Silence)

		Instance i														
Assembly	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
15 B	Input Error Status					F	iltered A	nalog In	put Valu	ue						

Bits 0 to 14, Signed 15 bits with implied tenths precision (-1638.4 to 1638.3) Bit 15, Analog Input Error (0 = None, 1 = Error)

		Instance i														
Assembly	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
16 B		Filtered Analog Input Value														

Bits 0 to 15, Signed 16 bits with implied tenths precision (-3276.8 to 3276.8)

	Instance	i + 7	Instance	e i + 6	Instance	i + 5	Instan	ice i + 4	Instanc	e i + 3	Instance	i + 2	Instance	i + 1	Instan	ice i
Assembly	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
17 B	Spare	Input Error Status	Spare	Input Error Status	Spare	Input Error Status	Spare	Input Error Status	Spare	Input Error Status	Spare	Input Error Status	Spare	Input Error Status	Spare	Input Error Status

Bits 0, 2, 4, 6, 8, 10, 12, 14, Analog Input Error Status(0 = None, 1 = Error)

PM Specifications

LineVoltage/Power (Minimum/Maximum Ratings)

- 85 to 264V~ (ac), 47 to 63Hz
- 20 to 28V~ (ac), 47 to 63Hz
- 12 to 40V= (dc)
- 14VA maximum power consumption (PM4, 8 & 9)
- 10VA maximum power consumption (PM6)
- Data retention upon power failure via non-volatile memory
- Compliant with SEMIF47-0200, Figure R1-1 voltage sag requirements @ 24V~ (ac) or higher

Environment

- 0 to 149°F (-18 to 65°C) operating temperature
- -40 to 185°F (-40 to 85°C) storage temperature
- 0 to 90% RH, non-condensing

Accuracy

- Calibration accuracy and sensor conformity: \pm 0.1% of span, \pm 1°C @ the calibrated ambient temperature and rated line voltage
- Types R, S, B; 0.2%
- Type T below -50°C; 0.2%
- Calibration ambient temperature @ 77 ± 5°F (25 ± 3°C)
- Accuracy span :1000 °F (540°C) min.
- Temperature stability: ±0.1 °F/°F (±0.1°C/°C) rise in ambient max.

Agency Approvals

- UL® Listed to UL® 61010-1 File E185611
- UL® Reviewed to CSA C22.2 No.61010-1-04
- UL® 50Type 4X, NEMA 4X indoor locations, IP65 front panel seal (indoor use only)
- FM Class 3545 File 3029084 temperature limit switches
- CE-See Declaration of Conformity RoHS and W.E.E.E. compliant
- ODVA-EtherNet/IP™ and DeviceNet Compliance
- CSA C22. No. 24 File 158031 Class 4813-023-02, CSA Approved

Isolated Serial Communications

- EIA232/485, Modbus® RTU
- EtherNet/IP™, DeviceNet™ (ODVA certified)
- Modbus TCP
- Profibus DP

Wiring Termination—Touch-Safe Terminals

- Input, power and controller output terminals are touch safe removable 3.30 to 0.0507 mm² (12 to 22 AWG)
- Wire strip length 7.6 mm (0.30 in.)
- Torque 0.56 Nm (5.0 in-lb)

Universal Input

- Thermocouple, grounded or ungrounded sensors
 - $>20M\Omega$ input impedance
- Max. 2kΩ source resistance
- 3µA open sensor detection
- RTD 2- or 3-wire, platinum, 100 Ω and 1k Ω @ 0°C (32°F) calibration to DIN curve (0.00385 $\Omega/\Omega/^{\circ}C$)
- Process, 0-20mA @100 Ω , or 0-10V= (dc) @ 20k Ω input impedance; scalable, 0-50mV Voltage Input Ranges
 - Accuracy ±10mV ±1 LSD at standard conditions
 - Temperature stability ±100 PPM/°C maximum

Milliamp Input Ranges

- Accuracy ±20µA ±1 LSD at standard conditions
- Temperature stability ±100 PPM/°C maximum

Resolution Input Ranges

0 to 10V: 200µV nominal
 0 to 20mA: 0.5mA nominal

• Potentiometer: 0 to $1.2k\Omega$

Inverse scaling

• Current: input range is 0 to 50mA, 100Ω input impedance

• Response time: 1 second max., accuracy ±1mA typical

Input Type	Max Error @ 25 Deg C	Accuracy Range Low	Accuracy Range High	Units
J	±1.75	0	750	Deg C
K	±2.45	-200	1250	Deg C
Т	±1.55	-200	350	Deg C
Input Type	Max Error @ 25 Deg C	Accuracy Range Low	Accuracy Range High	Units
N	±2.25	0	1250	Deg C
E	±2.10	-200	900	Deg C
R	±3.9	0	1450	Deg C
S	±3.9	0	1450	Deg C
В	±2.66	870	1700	Deg C
С	±3.32	0	2315	Deg C
D	±3.32	0	2315	Deg C
F (PTII)	±2.34	0	1343	Deg C
RTD, 100 ohm	±2.00	-200	800	Deg C
RTD, 1000 ohm	±2.00	-200	800	DegC
mV	±0.05	-50	50	mV
Volts	±0.01	0	10	Volts
mAdc	±0.02	0	20	mAmps DC
mAac	±5	0	50	mAmps AC

Operating Range							
Input Type	Range Low	Range High	Units				
J	-210	1200	Deg C				
K	-270	1371	Deg C				
Т	-270	400	Deg C				
N	-270	1300	Deg C				
E	-270	1000	Deg C				
R	-50	1767	Deg C				
S	-50	1767	Deg C				
В	0	1816	Deg C				
С	0	2315	Deg C				
D	0	2315	Deg C				
F (PTII)	0	1343	Deg C				
RTD (100 ohm)	-200	800	Deg C				
RTD (1000 ohm)	-200	800	Deg C				
mV	0	50	mV				
Volts	0	10	Volts				
mAdc	0	20	mAmps DC				
mAac	0	50	mAmps AC				
Potentiometer, 1K range	0	1200	Ohms				
Resistance, 5K range	0	5000	Ohms				
Resistance, 10K range	0	10000	Ohms				
Resistance, 20K range	0	20000	Ohms				
Resistance, 40K range	0	40000	Ohms				

Thermistor Input										
Input Type	Max Error @ 25 Deg C	Accuracy Range Low	Accuracy Range High	Units						
Thermistor, 5K range	±5	0	5000	Ohms						
Thermistor, 10K range	±10	0	10000	Ohms						
Thermistor, 20K range	±20	0	20000	Ohms						
Thermistor, 40K range	±40	0	40000	Ohms						

- 0 to 40k Ω , 0 to 20k Ω , 0 to 10k Ω , 0 to 5k Ω
- 2.252k Ω and 10k Ω base at 25°C
- Linearization curves built in
- Third party Thermistor compatibility requirements

Base R @ 25C	Alpha Techniques	Beta THERM	YSI	Thermistor Curve
2.252K	Curve A	2.2K3A	004	Α
10K	Curve A	10K3A	016	В
10K	Curve C	10K4A	006	С

2 Digital Input/Output Option - 2 DIO

- Digital input update rate 10Hz
 - DC voltage
 - Max. input 36V @ 3mA
 - Min. high state 3V at 0.25mA
 - Max. low state 2V
 - Dry contact
 - Min. open resistance $10k\Omega$
 - Max. closed resistance 50Ω
 - Max. short circuit 13mA
- Digital output update rate 10Hz
 - SSR drive signal
 - Update rate 10 Hz
 - Maximum open circuit voltage is 22 to 25 -- (dc)
 - PNP transistor source
 - Typical drive; 21mA @ 4.5V for DO5, and 11mA @ 4.5V for DO6
 - Current limit 24mA for Output 5 and 12mA Output 6
 - Output 5 capable of driving one 3 pole DIN-A-MITE
 - Output 6 capable of driving one 1 pole DIN-A-MITE

Output Hardware

- Switched DC
 - Maximum open circuit voltage is 22 to 25V = (dc)
 - 30mA max. per single output / 40mA max. total per paired outputs (3 & 4)
 - Typical drive; 4.5V= (dc) @ 30mA
 - Short circuit limited to <50mA
 - Use dc- and dc+ to drive external solid-state relay
 - 1-pole DIN-A-MITE: up to 4 in parallel or 4 in series
 - 2-pole DIN-A-MITE: up to 2 in parallel or 2 in series
 - 3-pole DIN-A-MITE: up to 2 in series
- Switched dc/open collector = 30V
 — (dc) max. @ 100mA max. current sink
- Solid State Relay (SSR), FormA, 0.5A @ 24V~ (ac) min., 240V~ (ac) max., 1A at 50°F linear derating to 0.5A at 149°F resistive, opto-isolated, without contact suppression, 120/240V~ (ac) 20 VA pilot duty
 - Minimum holding current of 10mA
- Electromechanical relay, Form C, 5A, 24 to 240V~ (ac) or 30V— (dc) max., resistive load, 100,000 cycles at rated load, 125 VA pilot duty at 120/240V~ (ac), 25 VA at 24V~ (ac)
- Electromechanical relay, Form A, 5A, 24 to 240V~ (ac) or 30V[™] (dc) max., resistive load, 100,000 cycles at rated load, 125 VA pilot duty at 120/240V~ (ac), 25 VA at 24V~ (ac)
- NO-ARC relay, Form A, 15A, 24 to 240V~ (ac), no V— (dc), resistive load, 2 million cycles at rated load

- Universal process/retransmit, Output range selectable:
 - 0 to 10V= (dc) into a min. $1k\Omega$ load
 - 0 to 20mA into max. 800Ω load

Resolution

dc ranges: 2.5mV nominalmA ranges: 5μA nominal

Calibration Accuracy
- dc ranges: ±15mV
- mA ranges: ±30µA
Temperature Stability

- 100 ppm/°C

Operator Interface

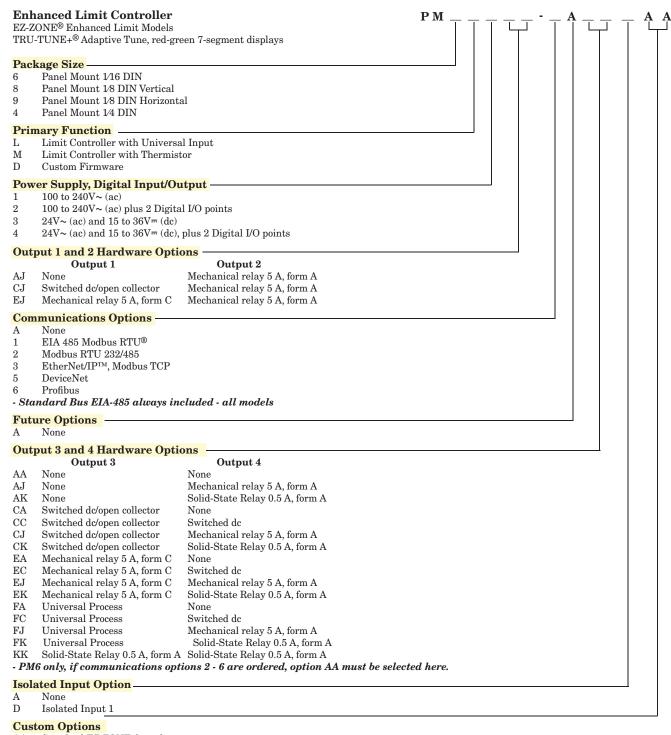
- Dual 4 digit, 7 segment LED displays
- Advance, infinity, up and down keys, plus optional programmable EZ-KEY/s depending on model size
- Typical display update rate 1Hz
- RESET key substituted for infinity on all models including the limit control

	Dimensions										
Size	Behind Panel (max.)	Width	Height	Display Character Height							
1/32	101.6 mm (4.00 in)	53.3 mm (2.10 in)	30.9 mm (1.22 in)	Large: 7.62 mm (0.300 in) Small: 5.59 mm (0.220 in)							
1/4	100.8 mm (3.97 in)	100.3 mm (3.95 in)	100.3 mm (3.95 in)	Large: 20.32 mm (0.800 in) Medium: 12.70 mm (0.500 in) Small: 10.16 mm (0.400 in)							
1/16	101.6 mm (4.00 in)	53.3 mm (2.10 in)	53.3 mm (2.10 in)	Large: 10.16 mm (0.400 in) Small: 5.97 mm (0.235 in)							
1/8 (H)	101.6 mm (4.00 in)	100.3 mm (3.95 in)	54.8 mm (2.16 in)	Large: 11.4 mm (0.450 in) Medium: 9.53 mm (0.375 in) Small: 7.62 mm (0.300 in)							
1/8 (V)	101.6 mm (4.00 in)	54.8 mm (2.16 in)	100.3 mm (3.95 in)	Large: 11.4 mm (0.450 in) Medium: 9.53 mm (0.375 in) Small: 7.62 mm (0.300 in)							

Weight						
1/32 DIN (PM3) • Controller: 127 g (4.5 oz.)	1/4 DIN (PM4) • Controller: 331 g (11.7 oz.)					
1/8 DIN (PM8 and 9) • Controller: 284 g (10 oz.)	1/16 DIN (PM6) • Controller: 186 g (6.6 oz.)					
User's Guide • User's Guide: 284.86 g (10.1 oz)						

Modbus® is a trademark of AEG Schneider Automation Inc.

EtherNet/IP™ is a trademark of ControlNet International Ltd. used under license by Open DeviceNet Vendor Association, Inc. (ODVA).


UL® is a registered trademark of Underwriters Laboratories Inc.

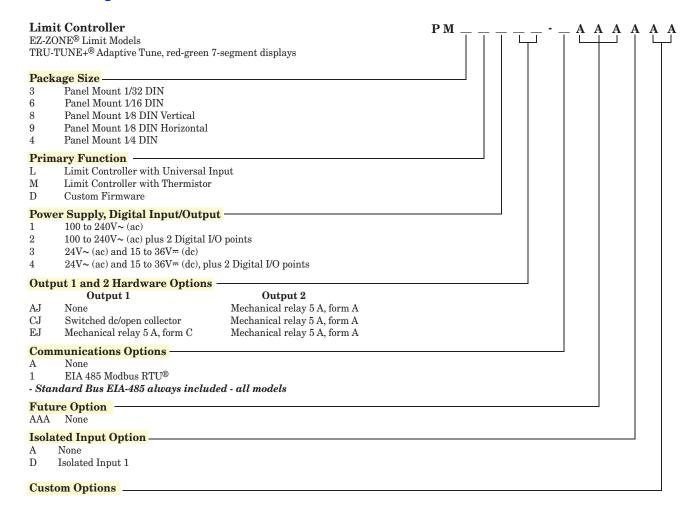
DeviceNet[™] is a trademark of Open DeviceNet Vendors Association.

Note:

These specifications are subject to change without prior notice.

Ordering Information for Enhanced Limit Controller Models

AA Standard EZ-ZONE face plate
AB EZ-ZONE logo and no Watlow name
AC No logo and no Watlow name


AG conformal coating

XX custom firmware, overlays, ...

Note:

The model of controller that you have is one of many possible models in the EZ-ZONE PM family of controllers. To view the others, visit our website (http://www.watlow.com/en/resources-and-support/Technical-Library/User-Manuals) and type EZ-ZONE into the Keyword field.

Ordering Information for Limit Controller Models

Note:

The model of controller that you have is one of many possible models in the EZ-ZONE PM family of controllers. To view the others, visit our website (http://www.watlow.com/en/resources-and-support/Technical-Library/User-Manuals) and type EZ-ZONE into the Keyword field.

Declaration of Conformity

Series EZ-ZONE® PM

WATLOW Electric Manufacturing Company

ISO 9001since 1996.

1241 Bundy Blvd.

Winona, MN 55987 USA

Declares that the following product:

Designation: Series EZ-ZONE® PM (Panel Mount)

Model Numbers: PM (3, 6, 8, 9 or 4)(Any Letter or number) – (1, 2, 3 or 4)(A, C, E, F or

K) (A, C, H, J or K)(Any letter or number) – (Any letter or number)(A, C,

E, F or K)(A, C, H, J or K) (Any three letters or numbers)

Classification: Temperature control, Installation Category II, Pollution degree 2, IP65

Rated Voltage and Frequency: 100 to 240 V~ (ac 50/60 Hz) or 15 to 36 V∞dc/ 24 V~ac 50/60 Hz

Rated Power Consumption: 10 VA maximum PM3, PM6 Models.

14 VA maximum PM8, PM9, PM4 Models

Meets the essential requirements of the following European Union Directives by using the relevant standards show below to indicate compliance.

2004/108/EC Electromagnetic Compatibility Directive

EN 61326-1	2013	Electrical equipment for measurement, control and laboratory use – EMC requirements (Industrial Immunity, Class B Emissions).
EN 61000-4-2	2009	Electrostatic Discharge Immunity
EN 61000-4-3	2010	Radiated Field Immunity 10V/M 80–1000 MHz, 3 V/M 1.4–2.7 GHz
EN 61000-4-4	2012	Electrical Fast-Transient / Burst Immunity
EN 61000-4-5	2006	Surge Immunity (Also compliant with IEC 61000-4-5 2014)
EN 61000-4-6	2014	Conducted Immunity
EN 61000-4-11	2004	Voltage Dips, Short Interruptions and Voltage Variations Immunity
EN 61000-3-2	2009	Harmonic Current Emissions (Also compliant with IEC 61000-3-2 2014)
EN 61000-3-3 ¹	2013	Voltage Fluctuations and Flicker
SEMI F47	2000	Specification for Semiconductor Sag Immunity Figure R1-1

¹For mechanical relay loads, cycle time may need to be extended up to 160 seconds to meet flicker requirements depending on load switched and source impedance.

2006/95/EC Low-Voltage Directive

EN 61010-1 2011²

Safety Requirements of electrical equipment for measurement, control and laboratory use. Part 1: General requirements

Compliant with 2011/65/EU RoHS2 Directive

Per 2012/19/EU W.E.E.E Directive

Please Recycle Properly.

Joe Millanes

Name of Authorized Representative

Winona, Minnesota, USA

Place of Issue

Director of Operations

Title of Authorized Representative

September 2014

Date of Issue

Signature of Authorized Representative

² Compliance with 3rd Edition requirements with use of external surge suppressor installed on 230 Vac~ power line units. Recommend minimum 1000 V peak to maximum 2000 V peak, 70 joules or better part be used.

How to Reach Us

Corporate Headquarters

Watlow Electric Manufacturing Company 12001 Lackland Road St. Louis, MO 63146 Sales: 1-800-WATLOW2

Manufacturing Support: 1-800-4WATLOW Email: info@watlow.com

Website: www.watlow.com

From outside the USA and Canada:

Tel: +1 (314) 878-4600 Fax: +1 (314) 878-6814

Latin America

Watlow de México S.A. de C.V. Av. Fundición No. 5 Col. Parques Industriales Querétaro, Qro. CP-76130 Mexico

Tel: +52 442 217-6235 Fax: +52 442 217-6403

Europe

Watlow France Tour d'Asnières. 4 Avenue Laurent Cély 92600 Asnières sur Seine

France

Tél: + 33 (0)1 41 32 79 70 Télécopie: + 33(0)1 47 33 36 57

Email: info@watlow.fr Website: www.watlow.fr

Watlow GmbH

Postfach 11 65. Lauchwasenstr. 1

D-76709 Kronau Germany

Tel: +49 (0) 7253 9400-0 Fax: +49 (0) 7253 9400-900 Email: info@watlow.de Website: www.watlow.de

Watlow Italy S.r.l. Viale Italia 52/54 20094 Corsico MI Italy

Tel: +39 024588841 Fax: +39 0245869954 Email: italyinfo@watlow.com Website: www.watlow.it Watlow Ibérica, S.L.U. C/Marte 12, Posterior, Local 9 E-28850 Torrejón de Ardoz

Madrid - Spain T. +34 91 675 12 92 F. +34 91 648 73 80 Email: info@watlow.es Website: www.watlow.es

Watlow UK Ltd. Linby Industrial Estate Linby, Nottingham, NG15 8AA United Kingdom

Telephone: (0) 115 964 0777 Fax: (0) 115 964 0071 Email: info@watlow.co.uk Website: www.watlow.co.uk

From outside The United Kingdom:

Tel: +44 115 964 0777 Fax: +44 115 964 0071

Asia and Pacific

Watlow Singapore Pte Ltd. 16 Ayer Rajah Crescent, #06-03/04, Singapore 139965

Tel: +65 6773 9488 Fax: +65 6778 0323

Email: info@watlow.com.sg Website: www.watlow.com.sg

Watlow Australia Pty., Ltd. 4/57 Sharps Road Tullamarine, VIC 3043 Australia

Tel: +61 3 9335 6449 Fax: +61 3 9330 3566

Website: www.watlow.com

Watlow Electric Manufacturing Company (Shanghai) Co. Ltd.

Room 501, Building 10, KIC Plaza 290 Songhu Road, Yangpu District Shanghai, China 200433

China Phone

Local: 4006 Watlow (4006 928569) International: +86 21 3381 0188

Fax: +86 21 6106 1423 Email: vlee@watlow.cn Website: www.watlow.cn

ワトロー・ジャパン株式会社

〒101-0047 東京都千代田区内神田1-14-4

四国ビル別館9階

Tel: 03-3518-6630 Fax: 03-3518-6632

Email: infoj@watlow.com Website: www.watlow.co.jp

Watlow Japan Ltd.

1-14-4 Uchikanda, Chivoda-Ku

Tokyo 101-0047

Japan

Tel: +81-3-3518-6630 Fax: +81-3-3518-6632 Email: infoj@watlow.com Website: www.watlow.co.jp

Watlow Korea Co., Ltd.

#1406, E&C Dream Tower, 46, Yangpyeongdong-3ga

Yeongdeungpo-gu, Seoul 150-103

Republic of Korea

Tel: +82 (2) 2628-5770 Fax: +82 (2) 2628-5771

Website: www.watlow.co.kr

Watlow Malaysia Sdn Bhd 1F-17, IOI Business Park

No.1, Persiaran Puchong Jaya Selatan

Bandar Puchong Jaya 47100 Puchong, Selangor D.E.

Malaysia

Tel: +60 3 8076 8745 Fax: +60 3 8076 7186

Email: vlee@watlow.com Website: www.watlow.com

瓦特龍電機股份有限公司

80143 高雄市前金區七賢二路189號 10樓之一

電話: 07-2885168 傳真: 07-2885568

Watlow Electric Taiwan Corporation 10F-1 No.189 Chi-Shen 2nd Road Kaohsiung 80143

Taiwan

Tel: +886-7-2885168 Fax: +886-7-2885568

Your Authorized Watlow Distributor

